Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674509

RESUMO

Amyotrophic lateral sclerosis (ALS) is an incurable motor neuron disease whose etiology remains unresolved; nonetheless, mutations of superoxide dismutase 1 (SOD1) have been associated with several variants of ALS. Currently available pharmacologic interventions are only symptomatic and palliative in effect; therefore, there is a pressing demand for more effective drugs. This study examined potential therapeutic effects of growth hormone secretagogues (GHSs), a large family of synthetic compounds, as possible candidates for the treatment of ALS. Human neuroblastoma cells expressing the SOD1-G93A mutated protein (SH-SY5Y SOD1G93A cells) were incubated for 24 h with H2O2 (150 µM) in the absence, or presence, of GHS (1 µM), in order to study the protective effect of GHS against increased oxidative stress. The two GHSs examined in this study, hexarelin and JMV2894, protected cells from H2O2-induced cytotoxicity by activating molecules that regulate apoptosis and promote cell survival processes. These findings suggest the possibility of developing new GHS-based anti-oxidant and neuroprotective drugs with improved therapeutic potential. Further investigations are required for the following: (i) to clarify GHS molecular mechanisms of action, and (ii) to envisage the development of new GHSs that may be useful in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica , Neuroblastoma , Humanos , Animais , Camundongos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Linhagem Celular , Modelos Animais de Doenças , Camundongos Transgênicos
2.
Curr Neuropharmacol ; 21(12): 2376-2394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36111771

RESUMO

Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.


Assuntos
Esclerose Lateral Amiotrófica , Grelina , Humanos , Grelina/uso terapêutico , Grelina/metabolismo , Receptores de Grelina/fisiologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Secretagogos , Hormônio do Crescimento/metabolismo
3.
Biomedicines ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36428476

RESUMO

This study investigated modifications of microRNA expression profiles in knee synovial fluid of patients with osteoarthritis (OA) and rupture of the anterior cruciate ligament (ACL). Twelve microRNAs (26a-5p, 27a-3p, let7a-5p, 140-5p, 146-5p, 155-5p, 16-5p,186-5p, 199a-3p, 210-3p, 205-5p, and 30b-5p) were measured by real-time quantitative polymerase chain reaction (RT-qPCR) in synovial fluids obtained from 30 patients with ACL tear and 18 patients with knee OA. These 12 miRNAs were chosen on the basis of their involvement in pathological processes of bone and cartilage. Our results show that miR-26a-5p, miR-186-5p, and miR-30b-5p were expressed in the majority of OA and ACL tear samples, whereas miR-199a-3p, miR-210-3p, and miR-205-5p were detectable only in a few samples. Interestingly, miR-140-5p was expressed in only one sample of thirty in the ACL tear group. miR-140-5p has been proposed to modulate two genes (BGN and COL5A1100) that are involved in ligamentous homeostasis; their altered expression could be linked with ACL rupture susceptibility. The expression of miR-30b-5p was higher in OA and chronic ACL groups compared to acute ACL samples. We provide evidence that specific miRNAs could be detected not only in synovial fluid of patients with OA, but also in post-traumatic ACL tears.

4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408847

RESUMO

Combined AntiRetroviral Treatments (cARTs) used for HIV infection may result in varied metabolic complications, which in some cases, may be related to patient genetic factors, particularly microRNAs. The use of monozygotic twins, differing only for HIV infection, presents a unique and powerful model for the controlled analysis of potential alterations of miRNAs regulation consequent to cART treatment. Profiling of 2578 mature miRNA in the subcutaneous (SC) adipose tissue and plasma of monozygotic twins was investigated by the GeneChip® miRNA 4.1 array. Real-time PCR and ddPCR experiments were performed in order to validate differentially expressed miRNAs. Target genes of deregulated miRNAs were predicted by the miRDB database (prediction score > 70) and enrichment analysis was carried out with g:Profiler. Processes in SC adipose tissue most greatly affected by miRNA up-regulation included (i) macromolecular metabolic processes, (ii) regulation of neurogenesis, and (iii) protein phosphorylation. Furthermore, KEGG analysis revealed miRNA up-regulation involvement in (i) insulin signaling pathways, (ii) neurotrophin signaling pathways, and (iii) pancreatic cancer. By contrast, miRNA up-regulation in plasma was involved in (i) melanoma, (ii) p53 signaling pathways, and (iii) focal adhesion. Our findings suggest a mechanism that may increase the predisposition of HIV+ patients to insulin resistance and cancer.


Assuntos
Infecções por HIV , MicroRNAs , Biologia Computacional , Perfilação da Expressão Gênica , Infecções por HIV/genética , Humanos , MicroRNAs/genética , Gordura Subcutânea , Gêmeos Monozigóticos/genética
6.
Pharmaceuticals (Basel) ; 14(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066741

RESUMO

Hexarelin, a synthetic hexapeptide, exerts cyto-protective effects at the mitochondrial level in cardiac and skeletal muscles, both in vitro and in vivo, may also have important neuroprotective bioactivities. This study examined the inhibitory effects of hexarelin on hydrogen peroxide (H2O2)-induced apoptosis in Neuro-2A cells. Neuro-2A cells were treated for 24 h with various concentrations of H2O2 or with the combination of H2O2 and hexarelin following which cell viability and nitrite (NO2-) release were measured. Cell morphology was also documented throughout and changes arising were quantified using Image J skeleton and fractal analysis procedures. Apoptotic responses were evaluated by Real-Time PCR (caspase-3, caspase-7, Bax, and Bcl-2 mRNA levels) and Western Blot (cleaved caspase-3, cleaved caspase-7, MAPK, and Akt). Our results indicate that hexarelin effectively antagonized H2O2-induced damage to Neuro-2A cells thereby (i) improving cell viability, (ii) reducing NO2- release and (iii) restoring normal morphologies. Hexarelin treatment also reduced mRNA levels of caspase-3 and its activation, and modulated mRNA levels of the BCL-2 family. Moreover, hexarelin inhibited MAPKs phosphorylation and increased p-Akt protein expression. In conclusion, our results demonstrate neuroprotective and anti-apoptotic effects of hexarelin, suggesting that new analogues could be developed for their neuroprotective effects.

7.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878142

RESUMO

VGF gene encodes for a neuropeptide precursor of 68 kDa composed by 615 (human) and 617 (rat, mice) residues, expressed prevalently in the central nervous system (CNS), but also in the peripheral nervous system (PNS) and in various endocrine cells. This precursor undergoes proteolytic cleavage, generating a family of peptides different in length and biological activity. Among them, TLQP-21, a peptide of 21 amino acids, has been widely investigated for its relevant endocrine and extraendocrine activities. The complement complement C3a receptor-1 (C3aR1) has been suggested as the TLQP-21 receptor and, in different cell lines, its activation by TLQP-21 induces an increase of intracellular Ca2+. This effect relies both on Ca2+ release from the endoplasmic reticulum (ER) and extracellular Ca2+ entry. The latter depends on stromal interaction molecules (STIM)-Orai1 interaction or transient receptor potential channel (TRPC) involvement. After Ca2+ entry, the activation of outward K+-Ca2+-dependent currents, mainly the KCa3.1 currents, provides a membrane polarizing influence which offset the depolarizing action of Ca2+ elevation and indirectly maintains the driving force for optimal Ca2+ increase in the cytosol. In this review, we address the main endocrine and extraendocrine actions displayed by TLQP-21, highlighting recent findings on its mechanism of action and its potential in different pathological conditions.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Neuropeptídeos/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Citosol/efeitos dos fármacos , Citosol/metabolismo , Humanos , Moléculas de Interação Estromal/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
8.
Int J Mol Sci ; 20(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31491959

RESUMO

Growth hormone secretagogues (GHS) are a family of synthetic molecules, first discovered in the late 1970s for their ability to stimulate growth hormone (GH) release. Many effects of GHS are mediated by binding to GHS-R1a, the receptor for the endogenous hormone ghrelin, a 28-amino acid peptide isolated from the stomach. Besides endocrine functions, both ghrelin and GHS are endowed with some relevant extraendocrine properties, including stimulation of food intake, anticonvulsant and anti-inflammatory effects, and protection of muscle tissue in different pathological conditions. In particular, ghrelin and GHS inhibit cardiomyocyte and endothelial cell apoptosis and improve cardiac left ventricular function during ischemia-reperfusion injury. Moreover, in a model of cisplatin-induced cachexia, GHS protect skeletal muscle from mitochondrial damage and improve lean mass recovery. Most of these effects are mediated by GHS ability to preserve intracellular Ca2+ homeostasis. In this review, we address the muscle-specific protective effects of GHS mediated by Ca2+ regulation, but also highlight recent findings of their therapeutic potential in pathological conditions characterized by skeletal or cardiac muscle impairment.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Secretagogos/farmacologia , Animais , Humanos
9.
Front Pharmacol ; 10: 461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133852

RESUMO

Background: Metabolic complications represent a common and serious problem associated with HIV infection and combined Antiretroviral Therapy (cART). Alterations in body fat distribution are associated with significantly increased risks of (i) metabolic derangements, (ii) cardiovascular pathologies, and (iii) insulin resistance. A case control study showed that in subcutaneous adipose tissue from HIV-infected patients on cART presenting lipodystrophy (LS), the levels of miRNA-218 were upregulated and those of lipin-1, a putative target gene of miRNA-218, were downregulated compared with HIV-negative subjects. Lipin-1 is one of the most important factors linked to development of LS. Lipin-1, by controlling PPARγ2, regulates the expression of specific genes, such as that of glucose transporter type 4 (GLUT-4), required for maturation and maintenance of adipocytes. Objectives: To determine whether lopinavir/ritonavir (LPV/RTV) can modulate lipogenesis in adipocytes affecting miRNA-218 and lipin-1 mRNA expression, and to investigate the functional link between miRNA-218 and GLUT-4 mRNA expression. Methods: Differentiated 3T3-L1 cells were treated with various combinations of LPV/RTV, followed by measurements of cell viability, lipid accumulation, lipin-1 and GLUT-4 mRNA and miRNA-218 levels. Transfection of anti-miR-218 or a miRNA-218 mimic were used to investigate the role of miRNA-218 in lipogenesis. Results: LPV/RTV treatment of 3T3-L1 cells did not affect the viability of differentiated 3T3-L1 cells, but caused (i) a significant decrease of lipid accumulation, (ii) an overexpression of miRNA-218, and (iii) a reduction of lipin-1 and GLUT-4 mRNA levels. The anti-miR-218 transfection of 3T3-L1 cells significantly ameliorated the adipogenic dysfunction and restored mRNA levels of lipin-1 and GLUT-4 consequent to LPV/RTV treatment. By contrast, 3T3-L1 cells transfected with a specific miRNA-218 mimic showed (i) an overexpression of miRNA-218, (ii) a reduced cellular lipid fraction, and (iii) decreased levels of mRNA for lipin-1 and GLUT-4. Conclusion: 3T3-L1 cells, treated with LPV/RTV, show altered lipid content due to increased miRNA-218 levels, which affects lipin-1 mRNA. Moreover, increased miRNA-218 levels were inversely correlated with changes in GLUT-4 expression, which suggests a role for miRNA-218 in mediating the insulin resistance consequent to cART.

10.
Front Pharmacol ; 9: 1386, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542288

RESUMO

TLQP-21 is a neuropeptide which has been implicated in regulation of nociception and other relevant physiologic functions. Although recent studies identified C3a and gC1q receptors as targets for TLQP-21, its intracellular molecular mechanisms of action remain largely unidentified. Our aim was (i) to explore the intracellular signaling pathway(s) activated by JMV5656, a novel derivative of TLQP-21, in RAW264.7 macrophages, and (ii) to assess linkages of these pathways with its purported receptors. JMV5656 stimulated, in a dose-dependent fashion, a rapid and transient increase in intracellular Ca2+ concentrations in RAW264.7 cells; repeated exposure to the peptide resulted in a lower response, suggesting a possible desensitization mechanism of the receptor. In particular, JMV5656 increased cytoplasmic Ca2+ levels by a PLC-dependent release of Ca2+ from the endoplasmic reticulum. STIM proteins and Orai Ca2+ channels were activated and played a crucial role. In fact, treatment of the cells with U73122 and thapsigargin modulated the increase of intracellular Ca2+ levels stimulated by JMV5656. Moreover, in RAW264.7 cells intracellular Ca2+ increases did not occur through the binding of JMV5656 to the C3a receptor, since the increase of intracellular Ca2+ levels induced by JMV5656 was not affected by specific siRNA against C3aR. In summary, our study provides new indications for the downstream effects of JMV5656 in macrophages, suggesting that it could activate receptors different from the C3aR.

11.
Mediators Inflamm ; 2018: 4210593, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245587

RESUMO

The treatment of anterior cruciate ligament (ACL) injuries in children and adolescents is challenging. Preclinical and clinical studies investigated ACL repairing techniques in skeletally immature subjects. However, intra-articular bioenvironment following ACL tear has not yet been defined in skeletally immature patients. The aim of this study was to measure cytokine concentrations in the synovial fluid in adolescent population. Synovial levels of IL-1ß, IL-1ra, IL-6, IL-8, IL-10, and TNF-α were measured in 17 adolescent patients (15 boys) with ACL tears who underwent ACL reconstruction including acute (5), subacute (7), and chronic (5) phases. Femoral growth plates were classified as "open" in three patients, "closing" in eight, and "closed" in six. Eleven patients presented an ACL tear associated with a meniscal tear. The mean Tegner and Lysholm scores (mean ± SD) of all patients were 8 ± 1 and 50.76 ± 26, respectively. IL-8, TNF-α, and IL-1ß levels were significantly greater in patients with "open" physes. IL-1ra and IL-1ß levels were significantly higher in patients with ACL tear associated with a meniscal tear. Poor Lysholm scores were associated with elevated IL-6 and IL-10 levels. IL-10 levels positively correlated with IL-6 and IL-8 levels, whereas TNF-α concentration negatively correlated with IL-6 levels. Skeletally immature patients with meniscal tears and open growth plates have a characteristic cytokine profile with particularly elevated levels of proinflammatory cytokines including IL-8, TNF-α, and IL-1ß. This picture suggests that the ACL tear could promote an intra-articular catabolic response in adolescent patients greater than that generally reported for adult subjects. The study lacks the comparison with synovial samples from healthy skeletally immature knees due to ethical reasons. Overall, these data contribute to a better knowledge of adolescent intra-articular bioenvironment following ACL injuries.


Assuntos
Lesões do Ligamento Cruzado Anterior/imunologia , Lesões do Ligamento Cruzado Anterior/metabolismo , Citocinas/metabolismo , Adolescente , Feminino , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Líquido Sinovial/química , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 18(11)2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149058

RESUMO

INTRODUCTION: Human neurodegenerative diseases increase progressively with age and present a high social and economic burden. Growth hormone (GH) and insulin-like growth factor-1 (IGF-1) are both growth factors exerting trophic effects on neuronal regeneration in the central nervous system (CNS) and peripheral nervous system (PNS). GH and IGF-1 stimulate protein synthesis in neurons, glia, oligodendrocytes, and Schwann cells, and favor neuronal survival, inhibiting apoptosis. This study aims to evaluate the effect of GH and IGF-1 on neurons, and their possible therapeutic clinical applications on neuron regeneration in human subjects. METHODS: In the literature, we searched the clinical trials and followed up studies in humans, which have evaluated the effect of GH/IGF-1 on CNS and PNS. The following keywords have been used: "GH/IGF-1" associated with "neuroregeneration", "amyotrophic lateral sclerosis", "Alzheimer disease", "Parkinson's disease", "brain", and "neuron". RESULTS: Of the retrieved articles, we found nine articles about the effect of GH in healthy patients who suffered from traumatic brain injury (TBI), and six studies (four using IGF-1 and two GH therapy) in patients with amyotrophic lateral sclerosis (ALS). The administration of GH in patients after TBI showed a significantly positive recovery of brain and mental function. Treatment with GH and IGF-1 therapy in ALS produced contradictory results. CONCLUSIONS: Although strong findings have shown the positive effects of GH/IGF-1 administration on neuroregeneration in animal models, a very limited number of clinical studies have been conducted in humans. GH/IGF-1 therapy had different effects in patients with TBI, evidencing a high recovery of neurons and clinical outcome, while in ALS patients, the results are contradictory. More complex clinical protocols are necessary to evaluate the effect of GH/IGF-1 efficacy in neurodegenerative diseases. It seems evident that GH and IGF-1 therapy favors the optimal recovery of neurons when a consistent residual activity is still present. Furthermore, the effect of GH/IGF-1 could be mediated by, or be overlapped with that of other hormones, such as estradiol and testosterone.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Lesões Encefálicas/terapia , Hormônio do Crescimento/uso terapêutico , Fator de Crescimento Insulin-Like I/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Adulto , Animais , Avaliação de Medicamentos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Neurônios/metabolismo , Ratos , Resultado do Tratamento
13.
Front Pharmacol ; 8: 167, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424618

RESUMO

VGF is a propeptide of 617 amino acids expressed throughout the central and the peripheral nervous system. VGF and peptides derived from its processing have been found in dense core vesicles and are released from neuronal and neuroendocrine cells via the regulated secretory pathway. Among VGF-derived neuropeptides, TLQP-21 (VGF556-576) has raised a huge interest and is one of most studied. TLQP-21 is a multifunctional neuropeptide involved in the control of several physiological functions, potentially including energy homeostasis, pain modulation, stress responsiveness and reproduction. Although little information is available about its receptor and the intracellular mechanisms mediating its biological effects, recent reports suggest that TLQP-21 may bind to the complement receptors C3aR1 and/or gC1qR. The first aim of this study was to ascertain the existence and nature of TLQP-21 binding sites in CHO cells. Secondly, we endeavored to characterize the ligand binding to these sites by using a small panel of VGF-derived peptides. And finally, we investigated the influence of TLQP-21 on selected intracellular signaling pathways. We report that CHO cells express a single class of saturable and specific binding sites for TLQP-21 with an affinity and capacity of Kd = 0.55 ± 0.05 × 10-9 M and Bmax = 81.7 ± 3.9 fmol/mg protein, respectively. Among the many bioactive products derived from the C-terminal region of VGF that we tested, TLQP-21 was the most potent in stimulating intracellular calcium mobilization in CHO cells; this effect is primarily due to its C-terminal fragment (HFHH-10). TLQP-21 induced rapid and transient dephosphorylation of phospholipase Cγ1 and phospholipase A2. Generation of IP3 and diacylglycerol was crucial for TLQP-21 bioactivity. In conclusion, our results suggest that the receptor stimulated by TLQP-21 belongs to the family of the Gq-coupled receptors, and its activation first increases membrane-lipid derived second messengers which thereby induce the mobilization of Ca2+ from the endoplasmic reticulum followed by a slower store-operated Ca2+ entry from outside the cell.

14.
Front Cell Neurosci ; 11: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280458

RESUMO

TLQP-21 (TLQPPASSRRRHFHHALPPAR) is a multifunctional peptide that is involved in the control of physiological functions, including feeding, reproduction, stress responsiveness, and general homeostasis. Despite the huge interest in TLQP-21 biological activity, very little is known about its intracellular mechanisms of action. In microglial cells, TLQP-21 stimulates increases of intracellular Ca2+ that may activate functions, including proliferation, migration, phagocytosis and production of inflammatory molecules. Our aim was to investigate whether JMV5656 (RRRHFHHALPPAR), a novel short analogue of TLQP-21, stimulates intracellular Ca2+ in the N9 microglia cells, and whether this Ca2+ elevation is coupled with the activation Ca2+-sensitive K+ channels. TLQP-21 and JMV5656 induced a sharp, dose-dependent increment in intracellular calcium. In 77% of cells, JMV5656 also caused an increase in the total outward currents, which was blunted by TEA (tetraethyl ammonium chloride), a non-selective blocker of voltage-dependent and Ca2+-activated potassium (K+) channels. Moreover, the effects of ion channel blockers charybdotoxin and iberiotoxin, suggested that multiple calcium-activated K+ channel types drove the outward current stimulated by JMV5656. Additionally, inhibition of JMV5656-stimulated outward currents by NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4 benzothiazin-3(4H)-one) and TRAM-34 (triarylmethane-34), indicated that KCa3.1 channels are involved in this JMV5656 mechanisms of action. In summary, we demonstrate that, in N9 microglia cells, the interaction of JMV5656 with the TLQP-21 receptors induced an increase in intracellular Ca2+, and, following extracellular Ca2+ entry, the opening of KCa3.1 channels.

15.
J Orthop Res ; 35(2): 340-346, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27107410

RESUMO

Concentrations of pro- and anti-inflammatory cytokines in synovial fluid samples collected from patients with chronic meniscal tears were investigated. An acute inflammatory response is generally reported 24-48 h after knee injury, but the largest body of data available in literature concerns anterior cruciate ligament injury and very little information is available about the balance of soluble factors in the synovial fluid of knees with chronic meniscal tears. Sixty-nine patients (46 males and 23 females) with meniscal tear that occurred more than 3 months earlier were enrolled. According to cartilage integrity assessment by arthroscopic examination, patients were assigned to one of the following groups: (i) no chondral damage (n = 18); (ii) chondral damage graded from I to II (n = 15); and (iii) chondral damage graded from III to IV (n = 37). In all groups, levels of IL-10 and inflammatory cytokines IL-6, TNF-α, and IL-8 where greater compared with those reported in the intact population; by contrast, levels of IL-1ra and IL-1ß were significantly lower. Interestingly, IL-6 levels were higher in female than male patients. Cytokine levels did not correlate with degree of chondral damage. IL-6 and IL-1ra levels positively correlated with IL-1ß, and negatively correlated with TNF-α. Interestingly, levels of IL-1ß and TNF-α were inversely correlated. Our data demonstrate increased levels of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the chronic phase of meniscal trauma. This pro-inflammatory state is maintained in the joint from the time of initial injury to several months later and could be a key factor in hampering cartilage regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:340-346, 2017.


Assuntos
Citocinas/metabolismo , Líquido Sinovial/metabolismo , Lesões do Menisco Tibial/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Endocrine ; 58(1): 106-114, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27896546

RESUMO

Oncologic patients subjected to chemotherapy frequently present aphagia, malnutrition, and cachexia. The purpose of this study was to investigate whether selected growth hormone secretagogues including hexarelin, JMV2894 and JMV2951 could antagonize body weight loss and wasting induced by cisplatin administration in rats. The three growth hormone secretagogues behaved as full agonists of the growth hormone secretagogues receptor both in terms of ability to stimulate calcium mobilization in Chinese hamster ovary cells and stimulation of growth hormone release in neonatal rats. Adult rats were (i) treated with vehicle throughout (controls), or (ii) treated with cisplatin (days 1-3) and a growth hormone secretagogues or vehicle, (days 1-12). Body weight and food consumption were measured daily. Although all growth hormone secretagogues caused initial transient acute increases in food intake, the total amount of food eaten by controls and growth hormone secretagogues treated groups over the 12 experimental days was not significantly different. All groups pre-treated with cisplatin lost up to 5-10 % body weight in the first 4 days; they subsequently gained weight at a rate comparable with controls. Interestingly, rats which received JMV2894 demonstrated a faster gain in body weight than any other growth hormone secretagogues treated group and at the end of the protocol reached a weight similar to that of controls. JMV2894 did not stimulate perirenal and epididymal fat accumulation but reduced MuRF mRNA levels in skeletal muscles. In conclusion, our findings demonstrate that JMV2894 antagonizes cisplatin induced weight loss in rats and may prove useful in antagonizing cachexia associated with cancer and chemotherapy in humans.


Assuntos
Caquexia/tratamento farmacológico , Hormônio do Crescimento/sangue , Indóis/farmacologia , Piperidinas/farmacologia , Receptores de Grelina/agonistas , Triazóis/farmacologia , Animais , Animais Recém-Nascidos , Antineoplásicos , Peso Corporal/efeitos dos fármacos , Células CHO , Caquexia/induzido quimicamente , Caquexia/patologia , Cálcio/metabolismo , Cisplatino , Cricetinae , Cricetulus , Ingestão de Alimentos/efeitos dos fármacos , Indóis/uso terapêutico , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Piperidinas/uso terapêutico , Ratos , Ratos Wistar , Triazóis/uso terapêutico , Doença de Emaciação Crônica/induzido quimicamente , Doença de Emaciação Crônica/tratamento farmacológico , Doença de Emaciação Crônica/patologia
17.
Mediators Inflamm ; 2016: 8243601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313403

RESUMO

Anterior cruciate ligament (ACL) reconstruction restores knee stability but does not reduce the incidence of posttraumatic osteoarthritis induced by inflammatory cytokines. The aim of this research was to longitudinally measure IL-1ß, IL-6, IL-8, IL-10, and TNF-α levels in patients subjected to ACL reconstruction using bone-patellar tendon-bone graft. Synovial fluid was collected within 24-72 hours of ACL rupture (acute), 1 month after injury immediately prior to surgery (presurgery), and 1 month thereafter (postsurgery). For comparison, a "control" group consisted of individuals presenting chronic ACL tears. Our results indicate that levels of IL-6, IL-8, and IL-10 vary significantly over time in reconstruction patients. In the acute phase, the levels of these cytokines in reconstruction patients were significantly greater than those in controls. In the presurgery phase, cytokine levels in reconstruction patients were reduced and comparable with those in controls. Finally, cytokine levels increased again with respect to control group in the postsurgery phase. The levels of IL-1ß and TNF-α showed no temporal variation. Our data show that the history of an ACL injury, including trauma and reconstruction, has a significant impact on levels of IL-6, IL-8, and IL-10 in synovial fluid but does not affect levels of TNF-α and IL-1ß.


Assuntos
Ligamento Cruzado Anterior/cirurgia , Citocinas/metabolismo , Líquido Sinovial/metabolismo , Adolescente , Adulto , Regulação da Expressão Gênica , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Projetos Piloto , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
19.
Int J Endocrinol ; 2014: 235060, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25147565

RESUMO

Background. Growth hormone (GH) and insulin-like growth factor (IGF-1) are fundamental in skeletal growth during puberty and bone health throughout life. GH increases tissue formation by acting directly and indirectly on target cells; IGF-1 is a critical mediator of bone growth. Clinical studies reporting the use of GH and IGF-1 in osteoporosis and fracture healing are outlined. Methods. A Pubmed search revealed 39 clinical studies reporting the effects of GH and IGF-1 administration on bone metabolism in osteopenic and osteoporotic human subjects and on bone healing in operated patients with normal GH secretion. Eighteen clinical studies considered the effect with GH treatment, fourteen studies reported the clinical effects with IGF-1 administration, and seven related to the GH/IGF-1 effect on bone healing. Results. Both GH and IGF-1 administration significantly increased bone resorption and bone formation in the most studies. GH/IGF-1 administration in patients with hip or tibial fractures resulted in increased bone healing, rapid clinical improvements. Some conflicting results were evidenced. Conclusions. GH and IGF-1 therapy has a significant anabolic effect. GH administration for the treatment of osteoporosis and bone fractures may greatly improve clinical outcome. GH interacts with sex steroids in the anabolic process. GH resistance process is considered.

20.
J Antimicrob Chemother ; 69(11): 3067-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25063777

RESUMO

OBJECTIVES: We evaluated the possibility that a pattern of abnormal microRNA (miRNA) expression could be fuelling the mechanisms causing HIV-associated lipodystrophy (HAL). METHODS: In this case-control study, samples of subcutaneous adipose tissue from eight consecutive HIV-infected patients on combination antiretroviral therapy with HAL (cases) were compared with those of eight HIV-negative subjects (controls). Human miRNA microarrays were used to probe the transcriptomes of the samples. Analysis of differentially expressed miRNAs was performed using DataAssist v2.0 software, applying a paired Student's t-test. RESULTS: Data showed that 21 miRNAs out of 754 were overexpressed in the patient group. Ten of these (i.e. miR-186, miR-199a-3p, miR-214, miR-374a, miR-487b, miR-532-5p, miR-628-5p, miR-874, miR-125-b-1* and miR-374b*) were up-regulated to a significant degree (fold change >2.5; P < 0.01). Eleven other miRNAs (i.e. miR-let-7d, miR-24, miR-30c, miR-125a-3p, miR-149, miR-191, miR-196-b, miR-218, miR-342-3p, miR-452 and miR-454*) were 2- to 2.5-fold more expressed in HIV+ samples than in controls. Levels of mRNA for lipin 1, the target of miR-218, were significantly lower in subcutaneous adipose tissue from HIV patients. CONCLUSIONS: In adipocytes of HIV-infected patients, the up-regulation of specific miRNAs could lead to an increased 'activation' that might contribute to the pathogenesis of HAL by increasing cell turnover and/or promotion of apoptosis.


Assuntos
Infecções por HIV/metabolismo , MicroRNAs/biossíntese , Gordura Subcutânea/metabolismo , Adulto , Idoso , Terapia Antirretroviral de Alta Atividade/métodos , Estudos de Casos e Controles , Regulação da Expressão Gênica , Infecções por HIV/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Gordura Subcutânea/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...