Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 99(7): 866-879, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29869979

RESUMO

Vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) in place of the VSV glycoprotein G (VSV/EBOV-GP) is a promising EBOV vaccine candidate which has already entered clinical phase 3 studies. Although this chimeric virus was tolerated overall by volunteers, it still caused viremia and adverse effects such as fever and arthritis, suggesting that it might not be sufficiently attenuated. In this study, the VSV/EBOV-GP vector was further modified in order to achieve attenuation while maintaining immunogenicity. All recombinant VSV constructs were propagated on VSV G protein expressing helper cells and used to immunize guinea pigs via the intramuscular route. The humoral immune response was analysed by EBOV-GP-specific fluorescence-linked immunosorbent assay, plaque reduction neutralization test and in vitro virus-spreading inhibition test that employed recombinant VSV/EBOV-GP expressing either green fluorescent protein or secreted Nano luciferase. Most modified vector constructs induced lower levels of protective antibodies than the parental VSV/EBOV-GP or a recombinant modified vaccinia virus Ankara vector encoding full-length EBOV-GP. However, the VSV/EBOV-GP(F88A) mutant was at least as immunogenic as the parental vaccine virus although it was highly propagation-restricted. This finding suggests that VSV-vectored vaccines need not be propagation-competent to induce a robust humoral immune response. However, VSV/EBOV-GP(F88A) rapidly reverted to a fully propagation-competent virus indicating that a single-point mutation is not sufficient to maintain the propagation-restricted phenotype.


Assuntos
Ebolavirus/imunologia , Glicoproteínas/imunologia , Imunogenicidade da Vacina , Vesiculovirus/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Ebolavirus/genética , Vetores Genéticos , Glicoproteínas/genética , Cobaias , Imunidade Humoral , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Vacinação , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
2.
Viruses ; 10(6)2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874821

RESUMO

Cellular kinases are crucial for the transcription/replication of many negative-strand RNA viruses and might serve as targets for antiviral therapy. In this study, a library comprising 80 kinase inhibitors was screened for antiviral activity against vesicular stomatitis virus (VSV), a prototype member of the family Rhabdoviridae. 1-Benzyl-3-cetyl-2-methylimidazolium iodide (NH125), an inhibitor of eukaryotic elongation factor 2 (eEF2) kinase, significantly inhibited entry of single-cycle VSV encoding a luciferase reporter. Treatment of virus particles had only minimal effect on virus entry, indicating that the compound primarily acts on the host cell rather than on the virus. Accordingly, resistant mutant viruses were not detected when the virus was passaged in the presence of the drug. Unexpectedly, NH125 led to enhanced, rather than reduced, phosphorylation of eEF2, however, it did not significantly affect cellular protein synthesis. In contrast, NH125 revealed lysosomotropic features and showed structural similarity with N-dodecylimidazole, a known lysosomotropic agent. Related alkylated imidazolium compounds also exhibited antiviral activity, which was critically dependent on the length of the alkyl group. Apart from VSV, NH125 inhibited infection by VSV pseudotypes containing the envelope glycoproteins of viruses that are known to enter cells in a pH-dependent manner, i.e. avian influenza virus (H5N1), Ebola virus, and Lassa virus. In conclusion, we identified an alkylated imidazolium compound which inhibited entry of several viruses not because of the previously postulated inhibition of eEF2 kinase but most likely because of its lysosomotropic properties.


Assuntos
Antivirais/farmacologia , Imidazóis/farmacologia , Vesiculovirus/efeitos dos fármacos , Vesiculovirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Ebolavirus/efeitos dos fármacos , Células HeLa , Humanos , Virus da Influenza A Subtipo H5N1/efeitos dos fármacos , Vírus Lassa/efeitos dos fármacos , Células Vero
3.
Proc Natl Acad Sci U S A ; 113(45): 12797-12802, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791106

RESUMO

Two novel influenza A-like viral genome sequences have recently been identified in Central and South American fruit bats and provisionally designated "HL17NL10" and "HL18NL11." All efforts to isolate infectious virus from bats or to generate these viruses by reverse genetics have failed to date. Recombinant vesicular stomatitis virus (VSV) encoding the hemagglutinin-like envelope glycoproteins HL17 or HL18 in place of the VSV glycoprotein were generated to identify cell lines that are susceptible to bat influenza A-like virus entry. More than 30 cell lines derived from various species were screened but only a few cell lines were found to be susceptible, including Madin-Darby canine kidney type II (MDCK II) cells. The identification of cell lines susceptible to VSV chimeras allowed us to recover recombinant HL17NL10 and HL18NL11 viruses from synthetic DNA. Both influenza A-like viruses established a productive infection in MDCK II cells; however, HL18NL11 replicated more efficiently than HL17NL10 in this cell line. Unlike conventional influenza A viruses, bat influenza A-like viruses started the infection preferentially at the basolateral membrane of polarized MDCK II cells; however, similar to conventional influenza A viruses, bat influenza A-like viruses were released primarily from the apical site. The ability of HL18NL11 or HL17NL10 viruses to infect canine and human cells might reflect a zoonotic potential of these recently identified bat viruses.

4.
Viruses ; 8(9)2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27649230

RESUMO

Rabies is a highly fatal zoonotic disease which is primarily caused by rabies virus (RABV) although other members of the genus Lyssavirus can cause rabies as well. As yet, 14 serologically and genetically diverse lyssaviruses have been identified, mostly in bats. To assess the quality of rabies vaccines and immunoglobulin preparations, virus neutralization tests with live RABV are performed in accordance with enhanced biosafety standards. In the present work, a novel neutralization test is presented which takes advantage of a modified vesicular stomatitis virus (VSV) from which the glycoprotein G gene has been deleted and replaced by reporter genes. This single-cycle virus was trans-complemented with RABV envelope glycoprotein. Neutralization of this pseudotype virus with RABV reference serum or immune sera from vaccinated mice showed a strong correlation with the rapid fluorescent focus inhibition test (RFFIT). Importantly, pseudotype viruses containing the envelope glycoproteins of other lyssaviruses were neutralized by reference serum to a significantly lesser extent or were not neutralized at all. Taken together, a pseudotype virus system has been successfully developed which allows the safe, fast, and sensitive detection of neutralizing antibodies directed against different lyssaviruses.


Assuntos
Anticorpos Neutralizantes/análise , Anticorpos Antivirais/análise , Lyssavirus/imunologia , Testes de Neutralização/métodos , Animais , Camundongos , Vesiculovirus/genética , Vesiculovirus/imunologia
5.
Vet Res ; 47: 33, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895704

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.


Assuntos
Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Replicon/imunologia , Vacinas Virais/imunologia , Viremia/veterinária , Animais , Glicoproteínas/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Suínos , Vacinas Sintéticas/imunologia , Vesiculovirus/genética , Vesiculovirus/imunologia , Proteínas Virais/metabolismo , Viremia/imunologia , Viremia/prevenção & controle , Vírion/imunologia
6.
J Virol ; 89(3): 1550-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25392225

RESUMO

UNLABELLED: The envelope of influenza A viruses contains two large antigens, hemagglutinin (HA) and neuraminidase (NA). Conventional influenza virus vaccines induce neutralizing antibodies that are predominantly directed to the HA globular head, a domain that is subject to extensive antigenic drift. Antibodies directed to NA are induced at much lower levels, probably as a consequence of the immunodominance of the HA antigen. Although antibodies to NA may affect virus release by inhibiting the sialidase function of the glycoprotein, the antigen has been largely neglected in past vaccine design. In this study, we characterized the protective properties of monospecific immune sera that were generated by vaccination with recombinant RNA replicon particles encoding NA. These immune sera inhibited hemagglutination in an NA subtype-specific and HA subtype-independent manner and interfered with infection of MDCK cells. In addition, they inhibited the sialidase activities of various influenza viruses of the same and even different NA subtypes. With this, the anti-NA immune sera inhibited the spread of H5N1 highly pathogenic avian influenza virus and HA/NA-pseudotyped viruses in MDCK cells in a concentration-dependent manner. When chickens were immunized with NA recombinant replicon particles and subsequently infected with low-pathogenic avian influenza virus, inflammatory serum markers were significantly reduced and virus shedding was limited or eliminated. These findings suggest that NA antibodies can inhibit virus dissemination by interfering with both virus attachment and egress. Our results underline the potential of high-quality NA antibodies for controlling influenza virus replication and place emphasis on NA as a vaccine antigen. IMPORTANCE: The neuraminidase of influenza A viruses is a sialidase that acts as a receptor-destroying enzyme facilitating the release of progeny virus from infected cells. Here, we demonstrate that monospecific anti-NA immune sera inhibited not only sialidase activity, but also influenza virus hemagglutination and infection of MDCK cells, suggesting that NA antibodies can interfere with virus attachment. Inhibition of both processes, virus release and virus binding, may explain why NA antibodies efficiently blocked virus dissemination in vitro and in vivo. Anti-NA immune sera showed broader reactivity than anti-HA sera in hemagglutination inhibition tests and demonstrated cross-subtype activity in sialidase inhibition tests. These remarkable features of NA antibodies highlight the importance of the NA antigen for the development of next-generation influenza virus vaccines.


Assuntos
Soros Imunes/imunologia , Vírus da Influenza A/imunologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Galinhas , Cães , Influenza Aviária/prevenção & controle , Neuraminidase/administração & dosagem , Suínos , Proteínas Virais/administração & dosagem , Internalização do Vírus , Liberação de Vírus/imunologia , Eliminação de Partículas Virais
7.
J Gen Virol ; 95(Pt 8): 1634-1639, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24814925

RESUMO

Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Técnicas de Visualização da Superfície Celular/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/virologia , Neuraminidase/imunologia , Proteínas Virais/imunologia , Animais , Aves , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Neuraminidase/genética , Testes de Neutralização , Vesiculovirus/genética , Proteínas Virais/genética
8.
PLoS One ; 8(6): e66059, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762463

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) of subtype H5N1 not only cause a devastating disease in domestic chickens and turkeys but also pose a continuous threat to public health. In some countries, H5N1 viruses continue to circulate and evolve into new clades and subclades. The rapid evolution of these viruses represents a problem for virus diagnosis and control. In this work, recombinant vesicular stomatitis virus (VSV) vectors expressing HA of subtype H5 were generated. To comply with biosafety issues the G gene was deleted from the VSV genome. The resulting vaccine vector VSV*ΔG(HA) was propagated on helper cells providing the VSV G protein in trans. Vaccination of chickens with a single intramuscular dose of 2×108 infectious replicon particles without adjuvant conferred complete protection from lethal H5N1 infection. Subsequent application of the same vaccine strongly boosted the humoral immune response and completely prevented shedding of challenge virus and transmission to sentinel birds. The vaccine allowed serological differentiation of infected from vaccinated animals (DIVA) by employing a commercially available ELISA. Immunized chickens produced antibodies with neutralizing activity against multiple H5 viruses representing clades 1, 2.2, 2.5, and low-pathogenic avian influenza viruses (classical clade). Studies using chimeric H1/H5 hemagglutinins showed that the neutralizing activity was predominantly directed against the globular head domain. In summary, these results suggest that VSV replicon particles are safe and potent DIVA vaccines that may help to control avian influenza viruses in domestic poultry.


Assuntos
Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/prevenção & controle , RNA/administração & dosagem , Replicon/genética , Vírion/genética , Animais , Western Blotting , Galinhas , Feminino , Imunofluorescência , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/imunologia , Influenza Aviária/virologia , RNA/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacinação , Vesiculovirus/genética , Eliminação de Partículas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...