Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(5): 101843, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307351

RESUMO

The B-cell receptor (BCR), a complex comprised of a membrane-associated immunoglobulin and the Igα/ß heterodimer, is one of the most important immune receptors in humans and controls B-cell development, activity, selection, and death. BCR signaling plays key roles in autoimmune diseases and lymphoproliferative disorders, yet, despite the clinical significance of this protein complex, key regions (i.e., the transmembrane domains) have yet to be structurally characterized. The mechanism for BCR signaling also remains unclear and has been variously described by the mutually exclusive cross-linking and dissociation activation models. Common to these models is the significance of local plasma membrane composition, which implies that interactions between BCR transmembrane domains (TMDs) play a role in receptor functionality. Here we used an in vivo assay of TMD oligomerization called GALLEX alongside spectroscopic and computational methods to characterize the structures and interactions of human Igα and Igß TMDs in detergent micelles and natural membranes. We observed weak self-association of the Igß TMD and strong self-association of the Igα TMD, which scanning mutagenesis revealed was entirely stabilized by an E-X10-P motif. We also demonstrated strong heterotypic interactions between the Igα and Igß TMDs both in vitro and in vivo, which scanning mutagenesis and computational models suggest is multiconfigurational but can accommodate distinct interaction sites for self-interactions and heterotypic interactions of the Igα TMD. Taken together, these results demonstrate that the TMDs of the human BCR are sites of strong protein-protein interactions that may direct BCR assembly, endoplasmic reticulum retention, and immune signaling.


Assuntos
Receptores de Antígenos de Linfócitos B , Membrana Celular/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Domínios Proteicos , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
2.
Chembiochem ; 22(14): 2430-2439, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34028161

RESUMO

Antibiotic resistance is a significant threat to human health, with natural products remaining the best source for new antimicrobial compounds. Antimicrobial peptides (AMPs) are natural products with great potential for clinical use as they are small, amenable to customization, and show broad-spectrum activities. Lynronne-1 is a promising AMP identified in the rumen microbiome that shows broad-spectrum activity against pathogens such as methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. Here we investigated the structure of Lynronne-1 using solution NMR spectroscopy and identified a 13-residue amphipathic helix containing all six cationic residues. We used biophysical approaches to observe folding, membrane partitioning and membrane lysis selective to the presence of anionic lipids. We translated our understanding of Lynronne-1 structure to design peptides which varied in the size of their hydrophobic helical face. These peptides displayed the predicted continuum of membrane-lysis activities in vitro and in vivo, and yielded a new AMP with 4-fold improved activity against A. baumannii and 32-fold improved activity against S. aureus.


Assuntos
Peptídeos Antimicrobianos
3.
Sci Rep ; 10(1): 5727, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32235931

RESUMO

The glycopeptide antibiotic vancomycin has been widely used to treat infections of Gram-positive bacteria including Clostridium difficile and methicillin-resistant Staphylococcus aureus. However, since its introduction, high level vancomycin resistance has emerged. The genes responsible require the action of the two-component regulatory system VanSR to induce expression of resistance genes. The mechanism of detection of vancomycin by this two-component system has yet to be elucidated. Diverging evidence in the literature supports activation models in which the VanS protein binds either vancomycin, or Lipid II, to induce resistance. Here we investigated the interaction between vancomycin and VanS from Streptomyces coelicolor (VanSSC), a model Actinomycete. We demonstrate a direct interaction between vancomycin and purified VanSSC, and traced these interactions to the extracellular region of the protein, which we reveal adopts a predominantly α-helical conformation. The VanSSC-binding epitope within vancomycin was mapped to the N-terminus of the peptide chain, distinct from the binding site for Lipid II. In targeting a separate site on vancomycin, the effective VanS ligand concentration includes both free and lipid-bound molecules, facilitating VanS activation. This is the first molecular description of the VanS binding site within vancomycin, and could direct engineering of future therapeutics.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/metabolismo , Resistência a Vancomicina/genética , Vancomicina/farmacologia , Proteínas de Bactérias/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/efeitos dos fármacos , Streptomyces coelicolor/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...