Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 588(7837): 321-326, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33116306

RESUMO

Germinal centres, the structures in which B cells evolve to produce antibodies with high affinity for various antigens, usually form transiently in lymphoid organs in response to infection or immunization. In lymphoid organs associated with the gut, however, germinal centres are chronically present. These gut-associated germinal centres can support targeted antibody responses to gut infections and immunization1. But whether B cell selection and antibody affinity maturation take place in the face of the chronic and diverse antigenic stimulation characteristic of these structures under steady state is less clear2-8. Here, by combining multicolour 'Brainbow' cell-fate mapping and sequencing of immunoglobulin genes from single cells, we find that 5-10% of gut-associated germinal centres from specific-pathogen-free (SPF) mice contain highly dominant 'winner' B cell clones at steady state, despite rapid turnover of germinal-centre B cells. Monoclonal antibodies derived from these clones show increased binding, compared with their unmutated precursors, to commensal bacteria, consistent with antigen-driven selection. The frequency of highly selected gut-associated germinal centres is markedly higher in germ-free than in SPF mice, and winner B cells in germ-free germinal centres are enriched in 'public' clonotypes found in multiple individuals, indicating strong selection of B cell antigen receptors even in the absence of microbiota. Colonization of germ-free mice with a defined microbial consortium (Oligo-MM12) does not eliminate germ-free-associated clonotypes, yet does induce a concomitant commensal-specific B cell response with the hallmarks of antigen-driven selection. Thus, positive selection of B cells can take place in steady-state gut-associated germinal centres, at a rate that is tunable over a wide range by the presence and composition of the microbiota.


Assuntos
Linfócitos B/imunologia , Seleção Clonal Mediada por Antígeno , Microbioma Gastrointestinal/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Sequência de Aminoácidos , Animais , Linfócitos B/citologia , Células Clonais/citologia , Células Clonais/imunologia , Feminino , Vida Livre de Germes , Intestinos/citologia , Cinética , Masculino , Camundongos
2.
Cell ; 170(4): 637-648.e10, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28757252

RESUMO

Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.


Assuntos
Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Vacinas contra a AIDS/imunologia , Animais , Antígenos CD4/química , Antígenos CD4/metabolismo , Modelos Animais de Doenças , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/genética , Humanos , Camundongos , Mutação , Receptores Fc/imunologia , Linfócitos T/virologia
3.
Sci Immunol ; 1(3)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28580440

RESUMO

Commensal intestinal bacteria can prevent pathogenic infection; however, limited knowledge of the mechanisms by which individual bacterial species contribute to pathogen resistance has restricted their potential for therapeutic application. Here, we examined how colonization of mice with a human commensal Enterococcus faecium protects against enteric infections. We show that E. faecium improves host intestinal epithelial defense programs to limit Salmonella enterica serotype Typhimurium pathogenesis in vivo in multiple models of susceptibility. E. faecium protection is mediated by a unique peptidoglycan hydrolase, SagA, and requires epithelial expression of pattern recognition receptor components and antimicrobial peptides. Ectopic expression of SagA in non-protective and probiotic bacteria is sufficient to enhance intestinal barrier function and confer resistance against S. Typhimurium and Clostridium difficile pathogenesis. These studies demonstrate that specific factors from commensal bacteria can be used to improve host barrier function and limit the pathogenesis of distinct enteric infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...