Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(10): e45049, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071506

RESUMO

Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.


Assuntos
Homeostase/fisiologia , Fluidez de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácido Oleico/fisiologia , Proteína Quinase C/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
2.
Aging Cell ; 10(6): 1089-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21902802

RESUMO

Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan-extending mutations and four methods of DR on replicative lifespan (RLS) in the short-lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild-type cells. They also demonstrate that failure to observe lifespan extension in a short-lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.


Assuntos
Proteínas de Ligação a DNA/genética , Longevidade/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Sirtuína 2/genética , Proteínas de Ligação a DNA/deficiência , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genótipo , Modelos Biológicos , Variações Dependentes do Observador , Fenótipo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/deficiência , Sirtuína 2/deficiência
3.
FEMS Yeast Res ; 8(2): 276-86, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17995956

RESUMO

Using the Saccharomyces cerevisiae MATa/MATalpha ORF deletion collection, homozygous deletion strains were identified that undergo mating with MATa or MATalpha haploids. Seven homozygous deletions were identified that confer enhanced mating. Three of these, lacking CTF8, CTF18, and DCC1, mate at a low frequency with either MATa or MATalpha haploids. The products of these genes form a complex involved in sister chromatid cohesion. Each of these strains also exhibits increased chromosome loss rates, and mating likely occurs due to loss of one copy of chromosome III, which bears the MAT locus. Three other homozygous diploid deletion strains, ylr193cDelta/ylr193cDelta, yor305wDelta/yor305wDelta, and ypr170cDelta/ypr170cDelta, mate at very low frequencies with haploids of either or both mating types. However, an ist3Delta/ist3Delta strain mates only with MATa haploids. It is shown that IST3, previously linked to splicing, is required for efficient processing of the MATa1 message, particularly the first intron. As a result, the ist3Delta/ist3Delta strain expresses unbalanced ratios of Matalpha to Mata proteins and therefore mates with MATa haploids. Accordingly, mating in this diploid can be repressed by introduction of a MATa1 cDNA. In summary, this study underscores and elaborates upon predicted pathways by which mutations restore mating function to yeast diploids and identifies new mutants warranting further study.


Assuntos
Genes Fúngicos Tipo Acasalamento , Saccharomyces cerevisiae/fisiologia , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos Fúngicos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Diploide , Deleção de Genes , Genes Fúngicos Tipo Acasalamento/genética , Genes Fúngicos Tipo Acasalamento/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Troca de Cromátide Irmã/genética , Troca de Cromátide Irmã/fisiologia
4.
Genetics ; 175(1): 77-91, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17151231

RESUMO

The peroxisome, sole site of beta-oxidation in Saccharomyces cerevisiae, is known to be required for optimal growth in the presence of fatty acid. Screening of the haploid yeast deletion collection identified approximately 130 genes, 23 encoding peroxisomal proteins, necessary for normal growth on oleic acid. Oleate slightly enhances growth of wild-type yeast and inhibits growth of all strains identified by the screen. Nonperoxisomal processes, among them chromatin modification by H2AZ, Pol II mediator function, and cell-wall-associated activities, also prevent oleate toxicity. The most oleate-inhibited strains lack Sap190, a putative adaptor for the PP2A-type protein phosphatase Sit4 (which is also required for normal growth on oleate) and Ilm1, a protein of unknown function. Palmitoleate, the other main unsaturated fatty acid of Saccharomyces, fails to inhibit growth of the sap190delta, sit4delta, and ilm1delta strains. Data that suggest that oleate inhibition of the growth of a peroxisomal mutant is due to an increase in plasma membrane porosity are presented. We propose that yeast deficient in peroxisomal and other functions are sensitive to oleate perhaps because of an inability to effectively control the fatty acid composition of membrane phospholipids.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Ácido Oleico/farmacologia , Peroxissomos/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Ciclo Celular , Membrana Celular/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Histonas/genética , Histonas/metabolismo , Proteínas de Membrana/genética , Oxirredução , Peroxinas , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell Biol ; 23(16): 5768-79, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12897147

RESUMO

Evidence that pre-mRNA processing events are temporally and, in some cases, mechanistically coupled to transcription has led to the proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. Here we address two key questions raised by this proposal: (i) whether the U1 snRNP, which binds to the 5' splice site of each intron, is recruited cotranscriptionally in vivo and, (ii) if so, where along the length of active genes the U1 snRNP is concentrated. Using chromatin immunoprecipitation (ChIP) in yeast, we show that elevated levels of the U1 snRNP were specifically detected in gene regions containing introns and downstream of introns but not along the length of intronless genes. In contrast to capping enzymes, which bind directly to Pol II, the U1 snRNP was poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP was dependent on RNA synthesis and was abolished by intron removal. Microarray analysis revealed that intron-containing genes were preferentially selected by ChIP with the U1 snRNP. Thus, U1 snRNP accumulation at genes correlated with the presence and position of introns, indicating that introns are necessary for cotranscriptional U1 snRNP recruitment and/or retention.


Assuntos
Íntrons , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transcrição Gênica , Cromatina/metabolismo , Deleção de Genes , Genoma , Genótipo , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Testes de Precipitina , Regiões Promotoras Genéticas , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura
6.
Genetics ; 161(4): 1425-35, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12196390

RESUMO

Prions have revived interest in hereditary change that is due to change in cellular structure. How pervasive is structural inheritance and what are its mechanisms? Described here is the initial characterization of [Leu(P)], a heritable structural change of the mitochondrion of Saccharomyces cerevisiae that often but not always accompanies the loss of all or part of the mitochondrial genome. Three phenotypes are reported in [Leu(P)] vs. [Leu(+)] strains: twofold slower growth, threefold slower growth in the absence of leucine, and a marked delocalization of nuclear-encoded protein destined for the mitochondrion. Introduction of mitochondria from a [Leu(+)] strain by cytoduction can convert a [Leu(P)] strain to [Leu(+)] and vice versa. Evidence against the Mendelian inheritance of the trait is presented. The incomplete dominance of [Leu(P)] and [Leu(+)] and the failure of HSP104 deletion to have any effect suggest that the trait is not specified by a prion but instead represents a new class of heritable structural change.


Assuntos
Leucina/metabolismo , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Proteínas de Choque Térmico/genética , Príons/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA