Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Nat Cell Biol ; 26(2): 250-262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321203

RESUMO

A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.


Assuntos
Duodeno , Intestino Delgado , Humanos , Camundongos , Animais , Intestino Delgado/metabolismo , Duodeno/metabolismo , Intestinos , Jejuno/metabolismo , Íleo/metabolismo , Mamíferos
2.
bioRxiv ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37398339

RESUMO

Chitin is an abundant biopolymer and pathogen-associated molecular pattern that stimulates a host innate immune response. Mammals express chitin-binding and chitin-degrading proteins to remove chitin from the body. One of these proteins, Acidic Mammalian Chitinase (AMCase), is an enzyme known for its ability to function under acidic conditions in the stomach but is also active in tissues with more neutral pHs, such as the lung. Here, we used a combination of biochemical, structural, and computational modeling approaches to examine how the mouse homolog (mAMCase) can act in both acidic and neutral environments. We measured kinetic properties of mAMCase activity across a broad pH range, quantifying its unusual dual activity optima at pH 2 and 7. We also solved high resolution crystal structures of mAMCase in complex with oligomeric GlcNAcn, the building block of chitin, where we identified extensive conformational ligand heterogeneity. Leveraging these data, we conducted molecular dynamics simulations that suggest how a key catalytic residue could be protonated via distinct mechanisms in each of the two environmental pH ranges. These results integrate structural, biochemical, and computational approaches to deliver a more complete understanding of the catalytic mechanism governing mAMCase activity at different pH. Engineering proteins with tunable pH optima may provide new opportunities to develop improved enzyme variants, including AMCase, for therapeutic purposes in chitin degradation.

3.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790430

RESUMO

A key aspect of nutrient absorption is the exquisite division of labor across the length of the small intestine, with individual classes of micronutrients taken up at different positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum, and ileum. By examining fine-scale longitudinal segmentation of the mouse and human small intestines, we identified transcriptional signatures and upstream regulatory factors that define five domains of nutrient absorption, distinct from the three traditional sections. Spatially restricted expression programs were most prominent in nutrient-absorbing enterocytes but initially arose in intestinal stem cells residing in three regional populations. While a core signature was maintained across mice and humans with different diets and environments, domain properties were influenced by dietary changes. We established the functions of Ppar-ẟ and Cdx1 in patterning lipid metabolism in distal domains and generated a predictive model of additional transcription factors that direct domain identity. Molecular domain identity can be detected with machine learning, representing the first systematic method to computationally identify specific intestinal regions in mice. These findings provide a foundational framework for the identity and control of longitudinal zonation of absorption along the proximal:distal small intestinal axis.

4.
Nat Commun ; 14(1): 6872, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898600

RESUMO

Although gastric cancer is a leading cause of cancer-related deaths, systemic treatment strategies remain scarce. Here, we report the pro-tumorigenic properties of the crosstalk between intestinal tuft cells and type 2 innate lymphoid cells (ILC2) that is evolutionarily optimized for epithelial remodeling in response to helminth infection. We demonstrate that tuft cell-derived interleukin 25 (IL25) drives ILC2 activation, inducing the release of IL13 and promoting epithelial tuft cell hyperplasia. While the resulting tuft cell - ILC2 feed-forward circuit promotes gastric metaplasia and tumor formation, genetic depletion of tuft cells or ILC2s, or therapeutic targeting of IL13 or IL25 alleviates these pathologies in mice. In gastric cancer patients, tuft cell and ILC2 gene signatures predict worsening survival in intestinal-type gastric cancer where ~40% of the corresponding cancers show enriched co-existence of tuft cells and ILC2s. Our findings suggest a role for ILC2 and tuft cells, along with their associated cytokine IL13 and IL25 as gatekeepers and enablers of metaplastic transformation and gastric tumorigenesis, thereby providing an opportunity to therapeutically inhibit early-stage gastric cancer through repurposing antibody-mediated therapies.


Assuntos
Imunidade Inata , Neoplasias Gástricas , Humanos , Camundongos , Animais , Interleucina-13/metabolismo , Neoplasias Gástricas/patologia , Linfócitos/metabolismo , Hiperplasia/metabolismo , Metaplasia/metabolismo
5.
J Exp Med ; 220(12)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37773047

RESUMO

Adaptation of immune cells to tissue-specific microenvironments is a crucial process in homeostasis and inflammation. Here, we show that murine effector type 2 innate lymphoid cells (ILC2s) from various organs are equally effective in repopulating ILC2 niches in other anatomical locations where they adapt tissue-specific phenotypes of target organs. Single-cell transcriptomics of ILC2 populations revealed upregulation of retinoic acid (RA) signaling in ILC2s during adaptation to the small intestinal microenvironment, and RA signaling mediated reprogramming of kidney effector ILC2s toward the small intestinal phenotype in vitro and in vivo. Inhibition of intestinal ILC2 adaptation by blocking RA signaling impaired worm expulsion during Strongyloides ratti infection, indicating functional importance of ILC2 tissue imprinting. In conclusion, this study highlights that effector ILC2s retain the ability to adapt to changing tissue-specific microenvironments, enabling them to exert tissue-specific functions, such as promoting control of intestinal helminth infections.


Assuntos
Imunidade Inata , Tretinoína , Camundongos , Animais , Tretinoína/farmacologia , Linfócitos , Intestinos , Inflamação , Citocinas
7.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37163060

RESUMO

Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.

8.
Immunity ; 56(4): 704-722, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044061

RESUMO

Type 2 immunity is orchestrated by a canonical group of cytokines primarily produced by innate lymphoid cells, group 2, and their adaptive counterparts, CD4+ helper type 2 cells, and elaborated by myeloid cells and antibodies that accumulate in response. Here, we review the cytokine and cellular circuits that mediate type 2 immunity. Building from insights in cytokine evolution, we propose that innate type 2 immunity evolved to monitor the status of microbe-rich epithelial barriers (outside) and sterile parenchymal borders (inside) to meet the functional demands of local tissue, and, when necessary, to relay information to the adaptive immune system to reinforce demarcating borders to sustain these efforts. Allergic pathology likely results from deviations in local sustaining units caused by alterations imposed by environmental effects during postnatal developmental windows and exacerbated by mutations that increase vulnerabilities. This framework positions T2 immunity as central to sustaining tissue repair and regeneration and provides a context toward understanding allergic disease.


Assuntos
Hipersensibilidade , Imunidade Inata , Humanos , Linfócitos , Imunidade Adaptativa , Citocinas
9.
Annu Rev Pathol ; 18: 311-335, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351364

RESUMO

Tuft cells are found in tissues with distinct stem cell compartments, tissue architecture, and luminal exposures but converge on a shared transcriptional program, including expression of taste transduction signaling pathways. Here, we summarize seminal and recent findings on tuft cells, focusing on major categories of function-instigation of type 2 cytokine responses, orchestration of antimicrobial responses, and emerging roles in tissue repair-and describe tuft cell-derived molecules used to affect these functional programs. We review what is known about the development of tuft cells from epithelial progenitors under homeostatic conditions and during disease. Finally, we discuss evidence that immature, or nascent, tuft cells with potential for diverse functions are driven toward dominant effector programs by tissue- or perturbation-specific contextual cues, which may result in heterogeneous mature tuft cell phenotypes both within and between tissues.


Assuntos
Mucosa Intestinal , Transdução de Sinais , Humanos , Linhagem da Célula , Mucosa Intestinal/metabolismo , Células-Tronco , Homeostase , Células Epiteliais/metabolismo
10.
Immunity ; 55(10): 1891-1908.e12, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044899

RESUMO

Demodex mites are commensal parasites of hair follicles (HFs). Normally asymptomatic, inflammatory outgrowth of mites can accompany malnutrition, immune dysfunction, and aging, but mechanisms restricting Demodex outgrowth are not defined. Here, we show that control of mite HF colonization in mice required group 2 innate lymphoid cells (ILC2s), interleukin-13 (IL-13), and its receptor, IL-4Ra-IL-13Ra1. HF-associated ILC2s elaborated IL-13 that attenuated HFs and epithelial proliferation at anagen onset; in their absence, Demodex colonization led to increased epithelial proliferation and replacement of gene programs for repair by aberrant inflammation, leading to the loss of barrier function and HF exhaustion. Humans with rhinophymatous acne rosacea, an inflammatory condition associated with Demodex, had increased HF inflammation with decreased type 2 cytokines, consistent with the inverse relationship seen in mice. Our studies uncover a key role for skin ILC2s and IL-13, which comprise an immune checkpoint that sustains cutaneous integrity and restricts pathologic infestation by colonizing HF mites.


Assuntos
Infestações por Ácaros , Ácaros , Animais , Citocinas , Folículo Piloso/patologia , Humanos , Imunidade Inata , Inflamação , Interleucina-13 , Linfócitos/patologia , Camundongos , Infestações por Ácaros/complicações , Infestações por Ácaros/parasitologia , Infestações por Ácaros/patologia , Simbiose
11.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608904

RESUMO

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dinoprostona , Interleucina-13/metabolismo , Camundongos , Sistema Respiratório
12.
Sci Immunol ; 7(69): eabj1080, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35245089

RESUMO

Inflammation and dysfunction of the extrahepatic biliary tree are common causes of human pathology, including gallstones and cholangiocarcinoma. Despite this, we know little about the local regulation of biliary inflammation. Tuft cells, rare sensory epithelial cells, are particularly prevalent in the mucosa of the gallbladder and extrahepatic bile ducts. Here, we show that biliary tuft cells express a core genetic tuft cell program in addition to a tissue-specific gene signature and, in contrast to small intestinal tuft cells, decreased postnatally, coincident with maturation of bile acid production. Manipulation of enterohepatic bile acid recirculation revealed that tuft cell abundance is negatively regulated by bile acids, including in a model of obstructive cholestasis in which inflammatory infiltration of the biliary tree correlated with loss of tuft cells. Unexpectedly, tuft cell-deficient mice spontaneously displayed an increased gallbladder epithelial inflammatory gene signature accompanied by neutrophil infiltration that was modulated by the microbiome. We propose that biliary tuft cells function as bile acid-sensitive negative regulators of inflammation in biliary tissues and serve to limit inflammation under homeostatic conditions.


Assuntos
Ácidos e Sais Biliares , Sistema Biliar , Animais , Células Epiteliais/fisiologia , Inflamação , Camundongos , Neutrófilos
13.
Curr Opin Immunol ; 75: 102168, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35176675

RESUMO

Over the last decade, we have come to appreciate group 2 innate lymphoid cells (ILC2s) as important players in host and tissue immunity. New studies of ILC2s and their precursors using novel reporter mice, advanced microscopy, and multi-omics approaches have expanded our knowledge on how these cells contribute to tissue physiology and function. This review highlights recent literature on this enigmatic cell, and we organize our discussion across three important paradigms in ILC2 biology: development, divergence, and dispersal. In addition, we frame our discussion in the context of other innate and adaptive immune cells to emphasize the relevance of expanding knowledge of ILC2s and tissue immunity.


Assuntos
Imunidade Inata , Linfócitos , Animais , Humanos , Camundongos
14.
Immunity ; 55(2): 254-271.e7, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35139352

RESUMO

Allergic immunity is orchestrated by group 2 innate lymphoid cells (ILC2s) and type 2 helper T (Th2) cells prominently arrayed at epithelial- and microbial-rich barriers. However, ILC2s and Th2 cells are also present in fibroblast-rich niches within the adventitial layer of larger vessels and similar boundary structures in sterile deep tissues, and it remains unclear whether they undergo dynamic repositioning during immune perturbations. Here, we used thick-section quantitative imaging to show that allergic inflammation drives invasion of lung and liver non-adventitial parenchyma by ILC2s and Th2 cells. However, during concurrent type 1 and type 2 mixed inflammation, IFNγ from broadly distributed type 1 lymphocytes directly blocked both ILC2 parenchymal trafficking and subsequent cell survival. ILC2 and Th2 cell confinement to adventitia limited mortality by the type 1 pathogen Listeria monocytogenes. Our results suggest that the topography of tissue lymphocyte subsets is tightly regulated to promote appropriately timed and balanced immunity.


Assuntos
Inflamação/imunologia , Interferon gama/imunologia , Subpopulações de Linfócitos/imunologia , Células Th2/imunologia , Animais , Morte Celular/imunologia , Movimento Celular/imunologia , Hipersensibilidade/imunologia , Imunidade Inata , Interleucina-33/imunologia , Interleucina-5/metabolismo , Listeria monocytogenes , Listeriose/imunologia , Listeriose/mortalidade , Fígado/imunologia , Pulmão/imunologia , Subpopulações de Linfócitos/metabolismo , Lisofosfolipídeos/imunologia , Camundongos , Tecido Parenquimatoso/imunologia , Esfingosina/análogos & derivados , Esfingosina/imunologia , Células Th1/imunologia , Células Th2/metabolismo
15.
Sci Immunol ; 6(64): eabh0707, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34652961

RESUMO

Type 2 T helper (TH2) cells are protective against parasitic worm infections but also aggravate allergic inflammation. Although the role of dendritic cells (DCs) in TH2 cell differentiation is well established, the underlying mechanisms are largely unknown. Here, we show that DC induction of TH2 cells depends on membrane-associated RING-CH-1 (MARCH1) ubiquitin ligase. The pro-TH2 effect of MARCH1 relied on lymph node (LN)­resident DCs, which triggered T cell receptor (TCR) signaling and induced GATA-3 expression from naïve CD4+ T cells independent of tissue-driven migratory DCs. Mice with mutations in the ubiquitin acceptor sites of MHCII and CD86, the two substrates of MARCH1, failed to develop TH2 cells. These findings suggest that TH2 cell development depends on ubiquitin-mediated clearance of antigen-presenting and costimulatory molecules by LN-resident DCs and consequent control of TCR signaling.


Assuntos
Células Dendríticas/imunologia , Linfonodos/imunologia , Células Th2/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ubiquitina-Proteína Ligases/deficiência
16.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34431978

RESUMO

Programs defining tissue-resident macrophage identity depend on local environmental cues. For alveolar macrophages (AMs), these signals are provided by immune and nonimmune cells and include GM-CSF (CSF2). However, evidence to functionally link components of this intercellular cross talk remains scarce. We thus developed new transgenic mice to profile pulmonary GM-CSF expression, which we detected in both immune cells, including group 2 innate lymphoid cells and γδ T cells, as well as AT2s. AMs were unaffected by constitutive deletion of hematopoietic Csf2 and basophil depletion. Instead, AT2 lineage-specific constitutive and inducible Csf2 deletion revealed the nonredundant function of AT2-derived GM-CSF in instructing AM fate, establishing the postnatal AM compartment, and maintaining AMs in adult lungs. This AT2-AM relationship begins during embryogenesis, where nascent AT2s timely induce GM-CSF expression to support the proliferation and differentiation of fetal monocytes contemporaneously seeding the tissue, and persists into adulthood, when epithelial GM-CSF remains restricted to AT2s.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Pulmão/citologia , Macrófagos Alveolares/fisiologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Citocinas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Imunidade Inata , Pulmão/embriologia , Macrófagos Alveolares/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
17.
Curr Protoc ; 1(7): e205, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34242484
18.
Mucosal Immunol ; 14(6): 1295-1305, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34290377

RESUMO

Innate lymphoid cells (ILCs) are tissue-resident effectors poised to activate rapidly in response to local signals such as cytokines. To preserve homeostasis, ILCs must employ multiple pathways, including tonic suppressive mechanisms, to regulate their primed state and prevent inappropriate activation and immunopathology. Such mechanisms remain incompletely characterized. Here we show that cytokine-inducible SH2-containing protein (CISH), a suppressor of cytokine signaling (SOCS) family member, is highly and constitutively expressed in type 2 innate lymphoid cells (ILC2s). Mice that lack CISH either globally or conditionally in ILC2s show increased ILC2 expansion and activation, in association with reduced expression of genes inhibiting cell-cycle progression. Augmented proliferation and activation of CISH-deficient ILC2s increases basal and inflammation-induced numbers of intestinal tuft cells and accelerates clearance of the model helminth, Nippostrongylus brasiliensis, but compromises innate control of Salmonella typhimurium. Thus, CISH constrains ILC2 activity both tonically and after perturbation, and contributes to the regulation of immunity in mucosal tissue.


Assuntos
Imunidade Inata , Imunomodulação , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Imunomodulação/genética , Camundongos , Camundongos Knockout , Proteínas Supressoras da Sinalização de Citocina/deficiência , Proteínas Supressoras da Sinalização de Citocina/metabolismo
19.
JCI Insight ; 6(12)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33974563

RESUMO

Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare but serious disease with poorly understood mechanisms. Here, we report that patients with EGPA have elevated levels of TSLP, IL-25, and soluble ST2, which are well-characterized cytokine "alarmins" that activate or modulate type 2 innate lymphoid cells (ILC2s). Patients with active EGPA have a concurrent reduction in circulating ILC2s, suggesting a role for ILC2s in the pathogenesis of this disease. To explore the mechanism of these findings in patients, we established a model of EGPA in which active vasculitis and pulmonary hemorrhage were induced by IL-33 administration in predisposed, hypereosinophilic mice. In this model, induction of pulmonary hemorrhage and vasculitis was dependent on ILC2s and signaling through IL4Rα. In the absence of IL4Rα or STAT6, IL-33-treated mice had less vascular leak and pulmonary edema, less endothelial activation, and reduced eotaxin production, cumulatively leading to a reduction of pathologic eosinophil migration into the lung parenchyma. These results offer a mouse model for use in future mechanistic studies of EGPA, and they suggest that IL-33, ILC2s, and IL4Rα signaling may be potential targets for further study and therapeutic targeting in patients with EGPA.


Assuntos
Síndrome de Churg-Strauss , Interleucina-33 , Linfócitos , Animais , Autoimunidade/imunologia , Síndrome de Churg-Strauss/imunologia , Síndrome de Churg-Strauss/metabolismo , Síndrome de Churg-Strauss/patologia , Modelos Animais de Doenças , Humanos , Imunidade Inata/imunologia , Interleucina-33/imunologia , Interleucina-33/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Camundongos
20.
Cell Rep ; 35(2): 108997, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852849

RESUMO

Despite the well-accepted view that chronic inflammation contributes to the pathogenesis of Duchenne muscular dystrophy (DMD), the function and regulation of eosinophils remain an unclear facet of type II innate immunity in dystrophic muscle. We report the observation that group 2 innate lymphoid cells (ILC2s) are present in skeletal muscle and are the principal regulators of muscle eosinophils during muscular dystrophy. Eosinophils were elevated in DMD patients and dystrophic mice along with interleukin (IL)-5, a major eosinophil survival factor that was predominantly expressed by muscle ILC2s. We also find that IL-33 was upregulated in dystrophic muscle and was predominantly produced by fibrogenic/adipogenic progenitors (FAPs). Exogenous IL-33 and IL-2 complex (IL-2c) expanded muscle ILC2s and eosinophils, decreased the cross-sectional area (CSA) of regenerating myofibers, and increased the expression of genes associated with muscle fibrosis. The deletion of ILC2s in dystrophic mice mitigated muscle eosinophilia and impaired the induction of IL-5 and fibrosis-associated genes. Our findings highlight a FAP/ILC2/eosinophil axis that promotes type II innate immunity, which influences the balance between regenerative and fibrotic responses during muscular dystrophy.


Assuntos
Eosinófilos/imunologia , Fibroblastos/imunologia , Interleucina-5/imunologia , Linfócitos/imunologia , Células-Tronco Mesenquimais/imunologia , Distrofia Muscular de Duchenne/imunologia , Animais , Proliferação de Células , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Interleucina-2/imunologia , Interleucina-2/farmacologia , Interleucina-33/imunologia , Interleucina-33/farmacologia , Interleucina-5/genética , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Linfócitos/efeitos dos fármacos , Linfócitos/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...