Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 62(42): 17328-17342, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37900303

RESUMO

This study investigated the performance of an acoustic backscatter system (ABS) for the in situ particle characterization of complex wastes. Two sediments were used: a fine, milled calcite that was flocculated with anionic polyacrylamide and naturally flocculated pond sludge. Particles were initially measured independently by light-based techniques to gain size, the coefficient of variation (COV), and fractal dimensions. For acoustic experiments, a bespoke, high-fidelity ABS was employed with 1, 2.25, and 5 MHz probes and a recirculating mixing tank. Initially, the concentration independent attenuation and backscatter coefficients were measured for each system using a robust calibration procedure at multiple concentrations. Comparisons of the total scattering cross-section (χ) and form function (f) were made between the experimental data and two semiempirical models: a Solid Scattering model and a Hybrid model (where the effects of bound fluid are incorporated). Experimental data compared more closely to the Solid Scattering model, as it was assumed scattering was dominated by small, bound "flocculi" rather than the macroscopic structure. However, if the COV was used as a fit parameter, the hybrid model could give equally accurate fits for a range of input aggregate sizes, highlighting that important size and structure information can be gained from the acoustic models if there is some a priori system data. Additionally, dual-frequency inversions were undertaken to measure concentration profiles for various frequency pairs. Here, the lowest frequency pair gave the best performance (with accurate measurements in the range of 2-35 g·L-1) as interparticle scattering was lowest.

2.
RSC Adv ; 11(30): 18661-18675, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480913

RESUMO

Mg(OH)2 suspensions were floated utilising sodium dodecyl sulphate (SDS) and sodium lauroyl isethionate (SLI) collectors, for rapid dewatering of radwaste suspensions. Freundlich adsorption isotherms were first used to compare the adsorption densities of SDS and SLI on Mg(OH)2 surfaces, to determine the maximum monolayer coverage capacity, and were found to be 0.11 µmol m-2 at a dosed concentration of 172 µM for SDS and 0.05 µmol m-2 at a dosed concentration of 188 µM for SLI. The natural and salt induced coagulation kinetics of Mg(OH)2 were examined using static light scattering, where the influence of collector adsorption on particle size distributions was also investigated, to probe potential hydrodynamic limitations of flotation. Particle stabilised foam formation was then characterised using a Bikerman column test, where the dynamic foamability indices (DFIs) of SDS and SLI were determined to be 49 × 103 s L mol-1 and 321 × 103 s L mol-1 respectively. Flotation performance was measured, and a collection efficiency factor used to compare the solid-liquid separation ability of mixed 2.5 vol% suspensions with SDS or SLI, as well as MIBC frother. Optimal performance aligned with collector concentrations relating to predicted maximum monolayer coverage, and whilst both surfactants were effective, SDS systems performed better than SLI in all metrics. Recoveries of >80% of the Mg(OH)2 wastes were achieved, whilst only transferring 35% of the water mass at the optimum SDS dosed concentration of 82 µM, likely due to its denser surface adsorption and minimised lamella water entrainment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...