Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559194

RESUMO

In placental females, one copy of the two X chromosomes is largely silenced during a narrow developmental time window, in a process mediated by the non-coding RNA Xist1. Here, we demonstrate that Xist can initiate X-chromosome inactivation (XCI) well beyond early embryogenesis. By modifying its endogenous level, we show that Xist has the capacity to actively silence genes that escape XCI both in neuronal progenitor cells (NPCs) and in vivo, in mouse embryos. We also show that Xist plays a direct role in eliminating TAD-like structures associated with clusters of escapee genes on the inactive X chromosome, and that this is dependent on Xist's XCI initiation partner, SPEN2. We further demonstrate that Xist's function in suppressing gene expression of escapees and topological domain formation is reversible for up to seven days post-induction, but that sustained Xist up-regulation leads to progressively irreversible silencing and CpG island DNA methylation of facultative escapees. Thus, the distinctive transcriptional and regulatory topologies of the silenced X chromosome is actively, directly - and reversibly - controlled by Xist RNA throughout life.

2.
Nucleic Acids Res ; 51(5): 2177-2194, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36727460

RESUMO

X chromosome inactivation (XCI) is an essential process, yet it initiates with remarkable diversity in various mammalian species. XIST, the main trigger of XCI, is controlled in the mouse by an interplay of lncRNA genes (LRGs), some of which evolved concomitantly to XIST and have orthologues across all placental mammals. Here, we addressed the functional conservation of human orthologues of two such LRGs, FTX and JPX. By combining analysis of single-cell RNA-seq data from early human embryogenesis with various functional assays in matched human and mouse pluripotent stem- or differentiated post-XCI cells, we demonstrate major functional differences for these orthologues between species, independently of primary sequence conservation. While the function of FTX is not conserved in humans, JPX stands as a major regulator of XIST expression in both species. However, we show that different entities of JPX control the production of XIST at various steps depending on the species. Altogether, our study highlights the functional versatility of LRGs across evolution, and reveals that functional conservation of orthologous LRGs may involve diversified mechanisms of action. These findings represent a striking example of how the evolvability of LRGs can provide adaptative flexibility to constrained gene regulatory networks.


Assuntos
Placenta , RNA Longo não Codificante , Gravidez , Humanos , Feminino , Camundongos , Animais , Placenta/metabolismo , Inativação do Cromossomo X/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Mamíferos/genética , Embrião de Mamíferos/metabolismo
3.
J Vis Exp ; (188)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36314814

RESUMO

The spatial organization of the genome contributes to its function and regulation in many contexts, including transcription, replication, recombination, and repair. Understanding the exact causality between genome topology and function is therefore crucial and increasingly the subject of intensive research. Chromosome conformation capture technologies (3C) allow inferring the 3D structure of chromatin by measuring the frequency of interactions between any region of the genome. Here we describe a fast and simple protocol to perform Capture Hi-C, a 3C-based target enrichment method that characterizes the allele-specific 3D organization of megabased-sized genomic targets at high-resolution. In Capture Hi-C, target regions are captured by an array of biotinylated probes before downstream high-throughput sequencing. Thus, higher resolution and allele-specificity are achieved while improving the time-effectiveness and affordability of the technology. To demonstrate its strengths, the Capture Hi-C protocol was applied to the mouse X-inactivation center (Xic), the master regulatory locus of X-chromosome inactivation (XCI).


Assuntos
Cromatina , Cromossomos , Camundongos , Animais , Mapeamento Cromossômico/métodos , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos
4.
Nat Rev Mol Cell Biol ; 23(4): 231-249, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35013589

RESUMO

X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.


Assuntos
Epigênese Genética , RNA Longo não Codificante , Epigênese Genética/genética , Feminino , Inativação Gênica , Humanos , Masculino , RNA Longo não Codificante/genética , Cromossomo X/genética , Inativação do Cromossomo X/genética
5.
PLoS Genet ; 15(9): e1008333, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31537017

RESUMO

In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.


Assuntos
Mecanismo Genético de Compensação de Dose/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Mecanismo Genético de Compensação de Dose/fisiologia , Epigênese Genética/genética , Feminino , Inativação Gênica/fisiologia , Humanos , Masculino , Mamíferos/genética , RNA Longo não Codificante/fisiologia , Cromossomo X/genética , Inativação do Cromossomo X/genética
6.
Sci Rep ; 9(1): 6068, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988473

RESUMO

X chromosome inactivation (XCI) is a mammalian specific, developmentally regulated process relying on several mechanisms including antisense transcription, non-coding RNA-mediated silencing, and recruitment of chromatin remodeling complexes. In vitro modeling of XCI, through differentiation of embryonic stem cells (ESCs), provides a powerful tool to study the dynamics of XCI, overcoming the need for embryos, and facilitating genetic modification of key regulatory players. However, to date, robust initiation of XCI in vitro has been mostly limited to mouse pluripotent stem cells. Here, we adapted existing protocols to establish a novel monolayer differentiation protocol for rat ESCs to study XCI. We show that differentiating rat ESCs properly downregulate pluripotency factor genes, and present female specific Xist RNA accumulation and silencing of X-linked genes. We also demonstrate that RNF12 seems to be an important player in regulation of initiation of XCI in rat, acting as an Xist activator. Our work provides the basis to investigate the mechanisms directing the XCI process in a model organism different from the mouse.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Inativação do Cromossomo X/fisiologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Masculino , Modelos Animais , Cultura Primária de Células , Ratos
7.
Methods Mol Biol ; 1861: 131-147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30218365

RESUMO

Fluorescent in situ hybridization (FISH) is a powerful cytogenetic technique that allows the visualization and quantification of RNA and DNA molecules in different cellular contexts. In general, FISH applications help to advance research, cytogenetics, and diagnostics. DNA FISH can be applied, for example, for gene mapping and for detecting genetic aberrations. RNA FISH provides information about gene expression. However, in cases where RNA and DNA molecules need to be detected in the same sample, the result is often compromised by the fact that the tissue sample is damaged due to the multitude of processing steps that are required for each application. In addition, the sequential application of RNA and DNA FISH protocols on the same sample is very time consuming. Here we describe a brief protocol that enables the combined and simultaneous detection of Xist RNA and centromeric DNA of chromosome 6 in mouse preimplantation embryos. In addition, we describe how to generate indirect-labeled probes starting from BACs. This protocol may be applied to any combination of RNA and DNA detection.


Assuntos
Blastocisto/metabolismo , Centrômero/metabolismo , DNA/análise , Hibridização in Situ Fluorescente/métodos , RNA Longo não Codificante/análise , Inativação do Cromossomo X , Animais , Blastocisto/química , Células Cultivadas , Epigenômica/métodos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos
8.
Nat Commun ; 8(1): 690, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947736

RESUMO

Xist is indispensable for X chromosome inactivation. However, how Xist RNA directs chromosome-wide silencing and why some regions are more efficiently silenced than others remains unknown. Here, we explore the function of Xist by inducing ectopic Xist expression from multiple different X-linked and autosomal loci in mouse aneuploid and female diploid embryonic stem cells in which Xist-mediated silencing does not lead to lethal functional monosomy. We show that ectopic Xist expression faithfully recapitulates endogenous X chromosome inactivation from any location on the X chromosome, whereas long-range silencing of autosomal genes is less efficient. Long interspersed elements facilitate inactivation of genes located far away from the Xist transcription locus, and genes escaping X chromosome inactivation show enrichment of CTCF on X chromosomal but not autosomal loci. Our findings highlight important genomic and epigenetic features acquired during sex chromosome evolution to facilitate an efficient X chromosome inactivation process.Xist RNA is required for X chromosome inactivation but it is not well understood how Xist silences some regions more efficiently than others. Here, the authors induce ectopic Xist expression from multiple different X-linked and autosomal loci in cells to explore Xist function.


Assuntos
Evolução Molecular , RNA Longo não Codificante/fisiologia , Inativação do Cromossomo X/genética , Animais , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
9.
Mol Cell Biol ; 36(21): 2656-2667, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528619

RESUMO

In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.


Assuntos
Cromossomos de Mamíferos/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Cromossomo X/genética , Alelos , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Loci Gênicos , Camundongos , Modelos Genéticos , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X/genética
10.
Mol Cell Biol ; 35(14): 2436-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963662

RESUMO

Genome-wide gene expression studies have indicated that the eukaryotic genome contains many gene pairs showing overlapping sense and antisense transcription. Regulation of these coding and/or noncoding gene pairs involves intricate regulatory mechanisms. In the present study, we utilized an enhanced green fluorescent protein (EGFP)-tagged reporter plasmid cis linked to a doxycycline-inducible antisense promoter, generating antisense transcription that fully overlaps EGFP, to study the mechanism and dynamics of gene silencing after induction of noncoding antisense transcription in undifferentiated and differentiating mouse embryonic stem cells (ESCs). We found that EGFP silencing is reversible in ESCs but is locked into a stable state upon ESC differentiation. Reversible silencing in ESCs is chromatin dependent and is associated with accumulation of trimethylated lysine 36 on histone H3 (H3K36me3) at the EGFP promoter region. In differentiating ESCs, antisense transcription-induced accumulation of H3K36me3 was associated with an increase in CpG methylation at the EGFP promoter. Repression of the sense promoter was affected by small-molecule inhibitors which interfere with DNA methylation and histone demethylation pathways. Our results indicate a general mechanism for silencing of fully overlapping sense-antisense gene pairs involving antisense transcription-induced accumulation of H3K36me3 at the sense promoter, resulting in reversible silencing of the sense partner, which is stabilized during ESC differentiation by CpG methylation.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Animais , Células Cultivadas , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA , DNA Antissenso/genética , Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos da Linhagem 129 , Camundongos Transgênicos , Modelos Genéticos , Regiões Promotoras Genéticas/genética
11.
PLoS One ; 6(2): e16983, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21347293

RESUMO

Mutations in the F-box only protein 7 gene (FBXO7) cause PARK15, an autosomal recessive neurodegenerative disease presenting with severe levodopa-responsive parkinsonism and pyramidal disturbances. Understanding the PARK15 pathogenesis might thus provide clues on the mechanisms of maintenance of brain dopaminergic neurons, the same which are lost in Parkinson's disease. The protein(s) encoded by FBXO7 remain very poorly characterized. Here, we show that two protein isoforms are expressed from the FBXO7 gene in normal human cells. The isoform 1 is more abundant, particularly in primary skin fibroblasts. Both isoforms are undetectable in cell lines from the PARK15 patient of an Italian family; the isoform 1 is undetectable and the isoform 2 is severely decreased in the patients from a Dutch PARK15 family. In human cell lines and mouse primary neurons, the endogenous or over-expressed, wild type FBXO7 isoform 1 displays mostly a diffuse nuclear localization. An intact N-terminus is needed for the nuclear FBXO7 localization, as N-terminal modification by PARK15-linked missense mutation, or N-terminus tag leads to cytoplasmic mislocalization. Furthermore, the N-terminus of wild type FBXO7 (but not of mutant FBXO7) is able to confer nuclear localization to profilin (a cytoplasmic protein). Our data also suggest that overexpressed mutant FBXO7 proteins (T22M, R378G and R498X) have decreased stability compared to their wild type counterpart. In human brain, FBXO7 immunoreactivity was highest in the nuclei of neurons throughout the cerebral cortex, intermediate in the globus pallidum and the substantia nigra, and lowest in the hippocampus and cerebellum. In conclusion, the common cellular abnormality found in the PARK15 patients from the Dutch and Italian families is the depletion of the FBXO7 isoform 1, which normally localizes in the cell nucleus. The activity of FBXO7 in the nucleus appears therefore crucial for the maintenance of brain neurons and the pathogenesis of PARK15.


Assuntos
Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Proteínas F-Box/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Masculino , Camundongos , Mutação , Rede Nervosa/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...