Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 90: 103084, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31271942

RESUMO

In the search for new treatments for complex disorders such as Alzheimer's disease the Multi-Target-Directed Ligands represent a very promising approach. The aim of the present study was to identify multifunctional compounds among several series of non-imidazole histamine H3 receptor ligands, derivatives of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine, 1-[2-thiazol-4-yl-(2-aminoethyl)]-4-n-propylpiperazine and 1-phenoxyalkyl-4-(amino)alkylopiperazine using in vitro and in vivo pharmacological evaluation and computational studies. Performed in vitro assays showed moderate potency of tested compounds against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Molecular modeling studies have revealed possible interactions between the active compounds and both AChE and BuChE as well as the human H3 histamine receptor. Computational studies showed the high drug-likeness of selected compounds with very good physicochemical profiles. The parallel artificial membrane permeation assay proved outstanding blood-brain barrier penetration in test conditions. The most promising compound, A12, chemically methyl(4-phenylbutyl){2-[2-(4-propylpiperazin-1-yl)-1,3-thiazol-5-yl]ethyl}amine, possesses good balanced multifunctional profile with potency toward studied targets - H3 antagonist activity (pA2 = 8.27), inhibitory activity against both AChE (IC50 = 13.96 µM), and BuChE (IC50 = 14.62 µM). The in vivo pharmacological studies revealed the anti-amnestic properties of compound A12 in the passive avoidance test on mice.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amnésia/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Piperazinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/química , Adjuvantes Anestésicos/toxicidade , Amnésia/induzido quimicamente , Animais , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Biologia Computacional , Técnicas In Vitro , Ligantes , Masculino , Camundongos , Modelos Moleculares , Estrutura Molecular , Receptores Histamínicos H3/química , Escopolamina/toxicidade , Relação Estrutura-Atividade
2.
Pharmacol Rep ; 69(1): 105-111, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27915183

RESUMO

BACKGROUND: The aim of this study was to synthesize a series of new N-Mannich bases derived from 4,4-diphenylpyrrolidin-2-one having differently substituted 4-phenylpiperazines as potential anticonvulsant agents with additional (beneficial) pharmacological properties. METHODS: The target compounds 8-12 were prepared in one step from the 4-substituted phenylpiperazines, paraformaldehyde, and synthesized 4,4-diphenylpyrrolodin-2-one (7) by a Mannich-type reaction. The obtained compounds were assessed and tested for their anticonvulsant activity in two screening mouse models of seizures, i.e., the maximal electroshock (MES) test and in the subcutaneous pentylenetetrazole (scPTZ) test. The effect of these compounds on animals' motor coordination was measured in the rotarod test. A selected 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) was evaluated in vivo for its anxiolytic- and antidepressant-like properties. Its impact on animals' locomotor activity was also evaluated. RESULTS: Compound 8 showed protection (25%) in the MES and in the scPTZ tests at the dose of 100mg/kg and was not neurotoxic. In the four-plate test, compound 8 at the dose of 30mg/kg showed a statistically significant (p<0.05) anxiolytic-like activity. In the forced swim test, it reduced the immobility time by 24.3% (significant at p<0.05), which indicates its potential antidepressant-like properties. In the locomotor activity test, compound 8 significantly reduced animals' locomotor activity by 79.9%. CONCLUSION: The results obtained make a new derivative of 4,4-diphenyl-1-((4-phenylpiperazin-1-yl)methyl)pyrrolidin-2-one (8) a promising lead structure for further development.


Assuntos
Ansiolíticos/química , Anticonvulsivantes/química , Antidepressivos/química , Piperazinas/química , Animais , Ansiolíticos/uso terapêutico , Anticonvulsivantes/uso terapêutico , Antidepressivos/uso terapêutico , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Masculino , Bases de Mannich/química , Bases de Mannich/uso terapêutico , Camundongos , Pentilenotetrazol/toxicidade , Piperazinas/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade
3.
J Enzyme Inhib Med Chem ; 30(1): 98-106, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24666296

RESUMO

The study presents the discovery of novel butyrylcholinesterase (BuChE) inhibitors among derivatives of azaphenothiazines by application of in silico and in vitro screening methods. From an in-house library of compounds, 143 heterocyclic molecules derived from the azaphenothiazine scaffold were chosen for virtual screening. Based on results of the docking procedure, 15 compounds were identified as exhibiting the best fit for the two screening complexes (ligand - AChE and ligand - BuChE). Five compounds displayed moderate AChE and good BuChE inhibitory activity at screening concentrations of 10 µM. The IC50 values for active BuChE inhibitors were in the 11.8-122.2 nM range. Three of the most active inhibitors are tetra- or pentacyclic derivatives of azaphenothiazines with the same N-methyl-2-piperidinethyl substituent.


Assuntos
Acetilcolinesterase/química , Compostos Aza/química , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Fenotiazinas/química , Acetilcolinesterase/isolamento & purificação , Animais , Compostos Aza/síntese química , Butirilcolinesterase/isolamento & purificação , Inibidores da Colinesterase/síntese química , Descoberta de Drogas , Electrophorus , Ensaios Enzimáticos , Ensaios de Triagem em Larga Escala , Cavalos , Cinética , Simulação de Acoplamento Molecular , Fenotiazinas/síntese química , Piperidinas/química , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...