Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Am J Med Genet A ; 194(7): e63580, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38511524

RESUMO

Deletions of the long arm of chromosome 20 (20q) are rare, with only 16 reported patients displaying a proximal interstitial 20q deletion. A 1.62 Mb minimal critical region at 20q11.2, encompassing three genes GDF5, EPB41L1, and SAMHD1, is proposed to be responsible for this syndrome. The leading clinical features include growth retardation, intractable feeding difficulties with gastroesophageal reflux, hypotonia and psychomotor developmental delay. Common facial dysmorphisms including triangular face, hypertelorism, and hypoplastic alae nasi were additionally reported. Here, we present the clinical and molecular findings of five new patients with proximal interstitial 20q deletions. We analyzed the phenotype and molecular data of all previously reported patients with 20q11.2q12 microdeletions, along with our five new cases. Copy number variation analysis of patients in our cohort has enabled us to identify the second critical region in the 20q11.2q12 region and redefine the first region that is initially identified. The first critical region spans 359 kb at 20q11.2, containing six MIM genes, including two disease-causing genes, GDF5 and CEP250. The second critical region spans 706 kb at 20q12, encompassing four MIM genes, including two disease-causing genes, MAFB and TOP1. We propose GDF5 to be the primary candidate gene generating the phenotype of patients with 20q11.2 deletions. Moreover, we hypothesize TOP1 as a potential candidate gene for the second critical region at 20q12. Of note, we cannot exclude the possibility of a synergistic role of other genes involved in the deletion, including a contiguous gene deletion syndrome or position effect affecting both critical regions. Further studies focusing on patients with proximal 20q deletions are required to support our hypothesis.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 20 , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Cromossomos Humanos Par 20/genética , Variações do Número de Cópias de DNA/genética , Fenótipo , Adolescente
2.
Genes (Basel) ; 15(1)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254992

RESUMO

The translocation of the testis-determining factor, the SRY gene, from the Y to the X chromosome is a rare event that causes abnormalities in gonadal development. In all cases of males and females carrying this translocation, disorder of sex development is reported. In our study, we described a peculiar pedigree with the first evidence of four healthy females from three generations who are carriers of the newly identified t(X;Y)(q28;p11.2)(SRY+) translocation with no evidence of ambiguous genitalia or other SRY-dependent alterations. Our study was a consequence of a Non-Invasive Prenatal Test (NIPT) showing a sexual chromosomal abnormality (XXY) followed by a chorionic villus analysis suggesting a normal karyotype 46,XX and t(X;Y) translocation detected by FISH. Here, we (i) demonstrated the inheritance of the translocation in the maternal lineage via karyotyping and FISH analysis; (ii) characterised the structural rearrangement via chromosomal microarray; and (iii) demonstrated, via Click-iT® EdU Imaging assay, that there was an absolute preferential inactivation of the der(X) chromosome responsible for the lack of SRY expression. Overall, our study provides valuable genetic and molecular information that may lead personal and medical decisions.


Assuntos
Cromossomos Humanos X , Genes sry , Masculino , Gravidez , Humanos , Feminino , Proteína da Região Y Determinante do Sexo/genética , Cromossomos Humanos X/genética , Aberrações Cromossômicas , Cariotipagem , Translocação Genética/genética
3.
Biomolecules ; 13(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37238595

RESUMO

Neurofibromatosis type 1 is an autosomal-dominant condition caused by NF1 gene inactivation. Clinical diagnosis is corroborated by genetic tests on gDNA and cDNA, which are inconclusive in approximately 3-5% of cases. Genomic DNA approaches may overlook splicing-affecting intronic variants and structural rearrangements, especially in regions enriched in repetitive sequences. On the other hand, while cDNA-based methods provide direct information about the effect of a variant on gene transcription, they are hampered by non-sense-mediated mRNA decay and skewed or monoallelic expression. Moreover, analyses on gene transcripts in some patients do not allow tracing back to the causative event, which is crucial for addressing genetic counselling, prenatal monitoring, and developing targeted therapies. We report on a familial NF1, caused by an insertion of a partial LINE-1 element inside intron 15, leading to exon 15 skipping. Only a few cases of LINE-1 insertion have been reported so far, hampering gDNA studies because of their size. Often, they result in exon skipping, and their recognition of cDNA may be difficult. A combined approach, based on Optical Genome Mapping, WGS, and cDNA studies, enabled us to detect the LINE-1 insertion and test its effects. Our results improve knowledge of the NF1 mutational spectrum and highlight the importance of custom-built approaches in undiagnosed patients.


Assuntos
Neurofibromatose 1 , Gravidez , Feminino , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/diagnóstico , Íntrons/genética , DNA Complementar , Elementos Nucleotídeos Longos e Dispersos/genética , Mutação
4.
Front Genet ; 14: 1315291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38380230

RESUMO

Interstitial deletions involving 6q chromosomal region are rare. Less than 30 patients have been described to date, and fewer have been characterized by high-resolution techniques, such as chromosomal microarray. Deletions involving 6q21q22.1 region are associated with an extremely wide and heterogeneous clinical spectrum, thus genotype-phenotype correlation based on the size of the rearranged region and on the involved genes is complex, even among individuals with overlapping deletions. Here we describe the phenotypic and molecular characterization of a new 6q interstitial deletion in a girl with developmental delay, intellectual disability, cerebellar vermis hypoplasia, facial peculiar characteristics, ataxia and ocular abnormalities. Microarray analysis of the proposita revealed a 7.9 Mb interstitial de novo deletion at 6q21q22.1 chromosomal region, which spanned from nucleotides 108,337,770 to 116,279,453 (GRCh38/hg38). The present case, alongside with a systematic review of the literature, provides further evidence that could aid to the definition of the Smallest Region of Overlap and of the genomic traits that are associated with particular phenotypes, focusing on neurological findings and especially on cerebellar anomalies.

5.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361691

RESUMO

Complex genomic rearrangements (CGRs) are structural variants arising from two or more chromosomal breaks, which are challenging to characterize by conventional or molecular cytogenetic analysis (karyotype and FISH). The integrated approach of standard and genomic techniques, including optical genome mapping (OGM) and genome sequencing, is crucial for disclosing and characterizing cryptic chromosomal rearrangements at high resolutions. We report on a patient with a complex developmental and epileptic encephalopathy in which karyotype analysis showed a de novo balanced translocation involving the long arms of chromosomes 2 and 18. Microarray analysis detected a 194 Kb microdeletion at 2q24.3 involving the SCN2A gene, which was considered the likely translocation breakpoint on chromosome 2. However, OGM redefined the translocation breakpoints by disclosing a paracentric inversion at 2q24.3 disrupting SCN1A. This combined genomic high-resolution approach allowed a fine characterization of the CGR, which involves two different chromosomes with four breakpoints. The patient's phenotype resulted from the concomitant loss of function of SCN1A and SCN2A.


Assuntos
Encefalopatias , Aberrações Cromossômicas , Humanos , Cariotipagem , Translocação Genética , Inversão Cromossômica , Cariótipo , Genômica , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.1
6.
J Cardiovasc Dev Dis ; 9(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286284

RESUMO

Filamin C is a protein specifically expressed in myocytes and cardiomyocytes and is involved in several biological functions, including sarcomere contractile activity, signaling, cellular adhesion, and repair. FLNC variants are associated with different disorders ranging from striated muscle (myofibrillar distal or proximal) myopathy to cardiomyopathies (CMPs) (restrictive, hypertrophic, and dilated), or both. The outcome depends on functional consequences of the detected variants, which result either in FLNC haploinsufficiency or in an aberrant protein, the latter affecting sarcomere structure leading to protein aggregates. Cardiac manifestations of filaminopathies are most often described as adult onset CMPs and limited reports are available in children or on other cardiac spectrums (congenital heart defects-CHDs, or arrhythmias). Here we report on 13 variants in 14 children (2.8%) out of 500 pediatric patients with early-onset different cardiac features ranging from CMP to arrhythmias and CHDs. In one patient, we identified a deletion encompassing FLNC detected by microarray, which was overlooked by next generation sequencing. We established a potential genotype-phenotype correlation of the p.Ala1186Val variant in severe and early-onset restrictive cardiomyopathy (RCM) associated with a limb-girdle defect (two new patients in addition to the five reported in the literature). Moreover, in three patients (21%), we identified a relatively frequent finding of long QT syndrome (LQTS) associated with RCM (n = 2) and a hypertrabeculated left ventricle (n = 1). RCM and LQTS in children might represent a specific red flag for FLNC variants. Further studies are warranted in pediatric cohorts to delineate potential expanding phenotypes related to FLNC.

7.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904974

RESUMO

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Variações do Número de Cópias de DNA , Diafragma , Hérnias Diafragmáticas Congênitas/genética , Camundongos
8.
Psychiatr Genet ; 31(6): 239-245, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34412080

RESUMO

INTRODUCTION: In humans the normal development of cortical regions depends on the complex interactions between a number of proteins that promote the migrations of neuronal precursors from germinal zones and assembly into neuronal laminae. ASTN2 is one of the proteins implicated in such a complex process. Recently it has been observed that ASTN2 also regulates the surface expression of multiple synaptic proteins resulting in a modulation of synaptic activity. Several rare copy number variants (CNVs) in ASTN2 gene were identified in patients with neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), attention deficit-hyperactivity disorders and intellectual disability. METHODS: By using comparative genomic hybridization array technology, we analyzed the genomic profiles of five patients of three unrelated families with NDDs. Clinical diagnosis of ASD was established according to the Statistical Manual of Mental Disorders, Fifth Edition (APA 2013) criteria. RESULTS: We identified new rare CNVs encompassing ASTN2 gene in three unrelated families with different clinical phenotypes of NDDs. In particular, we identified a deletion of about 70 Kb encompassing intron 19, a 186 Kb duplication encompassing the sequence between the 5'-end and the first intron of the gene and a 205 Kb deletion encompassing exons 6-11. CONCLUSION: The CNVs reported here involve regions not usually disrupted in patients with NDDs with two of them affecting only the expression of the long isoforms. Further studies will be needed to analyze the impact of these CNVs on gene expression regulation and to better understand their impact on the protein function.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Transtorno do Espectro Autista/genética , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Glicoproteínas/genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética
9.
Am J Med Genet A ; 185(8): 2417-2433, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34042254

RESUMO

Biallelic loss-of-function variants in the thrombospondin-type laminin G domain and epilepsy-associated repeats (TSPEAR) gene have recently been associated with ectodermal dysplasia and hearing loss. The first reports describing a TSPEAR disease association identified this gene is a cause of nonsyndromic hearing loss, but subsequent reports involving additional affected families have questioned this evidence and suggested a stronger association with ectodermal dysplasia. To clarify genotype-phenotype associations for TSPEAR variants, we characterized 13 individuals with biallelic TSPEAR variants. Individuals underwent either exome sequencing or panel-based genetic testing. Nearly all of these newly reported individuals (11/13) have phenotypes that include tooth agenesis or ectodermal dysplasia, while three newly reported individuals have hearing loss. Of the individuals displaying hearing loss, all have additional variants in other hearing-loss-associated genes, specifically TMPRSS3, GJB2, and GJB6, that present competing candidates for their hearing loss phenotype. When presented alongside previous reports, the overall evidence supports the association of TSPEAR variants with ectodermal dysplasia and tooth agenesis features but creates significant doubt as to whether TSPEAR variants are a monogenic cause of hearing loss. Further functional evidence is needed to evaluate this phenotypic association.


Assuntos
Anodontia/diagnóstico , Anodontia/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Variação Genética , Fenótipo , Proteínas/genética , Alelos , Substituição de Aminoácidos , Estudos de Coortes , Feminino , Estudos de Associação Genética , Loci Gênicos , Humanos , Masculino , Mutação , Linhagem , Radiografia
10.
Clin Case Rep ; 9(1): 314-321, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33505690

RESUMO

Interstitial 8p deletions were previously described, in literature and databases, in approximately 30 patients with neurodevelopmental disorders. We report on a novel patient with a 8p21.2p11.21 deletion presenting a clinical phenotype that includes severe intellectual disability, microcephaly, epilepsy, and autism, the latter having been rarely associated with this genetic defect.

11.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451138

RESUMO

We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.


Assuntos
Colágeno Tipo I/genética , Proteínas de Homeodomínio/genética , Homozigoto , Hormônio do Crescimento Humano/deficiência , Mutação , Osteoporose/diagnóstico , Osteoporose/etiologia , Adolescente , Idade de Início , Substituição de Aminoácidos , Colágeno Tipo I/química , Cadeia alfa 1 do Colágeno Tipo I , Análise Mutacional de DNA , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/química , Humanos , Hipopituitarismo/complicações , Hipopituitarismo/genética , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Fenótipo , Polimorfismo de Nucleotídeo Único , Radiografia , Relação Estrutura-Atividade
12.
Am J Med Genet A ; 185(1): 242-249, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098373

RESUMO

Williams-Beurens syndrome (WBS) is a rare genetic disorder caused by a recurrent 7q11.23 microdeletion. Clinical characteristics include typical facial dysmorphisms, weakness of connective tissue, short stature, mild to moderate intellectual disability and distinct behavioral phenotype. Cardiovascular diseases are common due to haploinsufficiency of ELN gene. A few cases of larger or smaller deletions have been reported spanning towards the centromeric or the telomeric regions, most of which included ELN gene. We report on three patients from two unrelated families, presenting with distinctive WBS features, harboring an atypical distal deletion excluding ELN gene. Our study supports a critical role of CLIP2, GTF2IRD1, and GTF2I gene in the WBS neurobehavioral profile and in craniofacial features, highlights a possible role of HIP1 in the autism spectrum disorder, and delineates a subgroup of WBS individuals with an atypical distal deletion not associated to an increased risk of cardiovascular defects.


Assuntos
Doença Celíaca/genética , Elastina/genética , Transtornos Neurocognitivos/genética , Síndrome de Williams/genética , Adolescente , Adulto , Doença Celíaca/complicações , Doença Celíaca/patologia , Criança , Deleção Cromossômica , Cromossomos Humanos Par 7/genética , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Humanos , Transtornos Neurocognitivos/complicações , Transtornos Neurocognitivos/patologia , Fenótipo , Síndrome de Williams/complicações , Síndrome de Williams/patologia
13.
Heliyon ; 6(10): e05143, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33024851

RESUMO

We collect the nasopharyngeal and oropharyngeal swabs of 63 subjects with severe symptoms or contacts with COVID-19 confirmed cases to perform a pilot-study aimed to verify the "in situ" expression of SARS-CoV-2 host invasion genes (ACE2, TMPRSS2, PCSK3, EMILIN1, EMILIN2, MMRN1, MMRN2, DPP4). ACE2 (FC = +1.88, p ≤ 0.05) and DPP4 (FC = +3, p < 0.01) genes showed a significant overexpression in COVID-19 patients. ACE2 and DPP4 expression levels had a good performance (AUC = 0.75; p < 0.001) in distinguishing COVID-19 patients from negative subjects. Interestingly, we found a significant positive association of ACE2 mRNA and PCSK3, EMILIN1, MMRN1 and MMRN2 expression and of DPP4 mRNA and EMILIN2 expression only in COVID-19 patients. Noteworthy, a subgroup of severe COVID-19 (n = 7) patients, showed significant high level of ACE2 mRNA and another subgroup of less severe COVID-19 patients (n = 6) significant raised DPP4 levels. These results indicate that a group of SARS-CoV-2 host invasion genes are functionally related in COVID-19 patients and suggests that ACE2 and DPP4 expression level could act as genomic biomarkers. Moreover, at the best of our knowledge, this is the first study that shows an elevated DPP4 expression in naso- and oropharyngeal swabs of COVID-19 patient thus suggesting a functional role of DPP4 in SARS-CoV-2 infections.

14.
Am J Med Genet A ; 182(12): 3014-3022, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32985083

RESUMO

Variants in PPP1R21 were recently found to be associated with an autosomal recessive intellectual disability syndrome in 9 individuals. Our patient, the oldest among the known subjects affected by PPP1R21-related syndrome, manifested intellectual disability, short stature, congenital ataxia with cerebellar vermis hypoplasia, generalized hypertrichosis, ulcerative keratitis, muscle weakness, progressive coarse appearance, macroglossia with fissured tongue, and deep palmar and plantar creases. We provide an overview of the clinical spectrum and natural history of this newly recognized disorder, arguing the emerging notion that PPP1R21 gene mutations could result in endolysosomal functional defects. The oldest patients could display a more severe clinical outcome, due to accumulation of metabolites or damage secondary to an alteration of the autophagy pathway. Follow-up of patients with PPP1R21 mutations is recommended for improving the understanding of PPP1R21-related syndromic intellectual disability.


Assuntos
Deficiências do Desenvolvimento/patologia , Deficiência Intelectual/patologia , Mutação , Malformações do Sistema Nervoso/patologia , Proteína Fosfatase 1/genética , Adulto , Deficiências do Desenvolvimento/genética , Feminino , Humanos , Deficiência Intelectual/genética , Malformações do Sistema Nervoso/genética , Linhagem , Síndrome
16.
Genes (Basel) ; 11(5)2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397165

RESUMO

Copy number variations (CNVs) play a key role in the pathogenesis of several diseases, including a wide range of neurodevelopmental disorders. Here, we describe the detection of three CNVs simultaneously in a female patient with evidence of severe myoclonic epilepsy, microcephaly, hypertelorism, dimorphisms as well as severe psychomotor delay and intellectual disability. Array-CGH analysis revealed a ∼240 kb microdeletion at the 7q35 inherited from her father, a ∼538 kb microduplication at the 15q13.3 region and a ∼178 kb microduplication at Xp22.33 region, both transmitted from her mother. The microdeletion in 7q35 was included within an intragenic region of the contactin associated protein-like 2 (CNTNAP2) gene, whereas the microduplications at 15q13.3 and Xp22.33 involved the cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) and the cytokine receptor-like factor 2 (CRLF2) genes, respectively. Here, we describe a female patient harbouring three CNVs whose additive contribution could be responsible for her clinical phenotypes.


Assuntos
Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 7/genética , Cromossomos Humanos X/genética , Epilepsias Mioclônicas/genética , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Adulto , Cromossomos Humanos Par 15/ultraestrutura , Cromossomos Humanos Par 7/ultraestrutura , Cromossomos Humanos X/ultraestrutura , Consanguinidade , Variações do Número de Cópias de DNA , Feminino , Duplicação Gênica , Estudos de Associação Genética , Humanos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Linhagem , Receptores de Citocinas/genética , Deleção de Sequência , Análise Serial de Tecidos , Receptor Nicotínico de Acetilcolina alfa7/genética
17.
Clin Genet ; 97(6): 927-932, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32170730

RESUMO

Two 1p36 contiguous gene deletion syndromes are known so far: the terminal 1p36 deletion syndrome and a 1p36 deletion syndrome with a critical region located more proximal at 1p36.23-1p36.22. We present even more proximally located overlapping deletions from seven individuals, with the smallest region of overlap comprising 1 Mb at 1p36.13-1p36.12 (chr1:19077793-20081292 (GRCh37/hg19)) defining a new contiguous gene deletion syndrome. The characteristic features of this new syndrome are learning disability or mild intellectual disability, speech delay, behavioral abnormalities, and ptosis. The genes UBR4 and CAPZB are considered the most likely candidate genes for the features of this new syndrome.


Assuntos
Blefaroptose/genética , Proteínas de Ligação a Calmodulina/genética , Proteína de Capeamento de Actina CapZ/genética , Transtornos Cromossômicos/genética , Deficiências da Aprendizagem/genética , Ubiquitina-Proteína Ligases/genética , Blefaroptose/patologia , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 1/genética , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/patologia , Masculino , Fenótipo
18.
Mol Genet Genomic Med ; 7(9): e896, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31390163

RESUMO

BACKGROUND: Since the establishment of chromosomal microarrays in clinical practice, many new microdeletion/microduplication syndromes have been identified, including 18q11.2 microdeletion. Chromosome 18q deletion syndrome is commonly classified into distal deletion and a much rarer proximal interstitial deletion spanning the 18q11.2-q21.1 region. METHODS: We report two new patients and review 27 additional cases in DECIPHER/ClinGen databases and four cases from the literature, with more proximal 18q deletions involving 18q11-q12 (band 1 only; 17.2-43.5 Mb position) deletion. RESULTS: Common presentations of 18q11-q12 deletions include developmental delay/intellectual disability (DD/ID) (82%); speech delay/autism/attention deficit and hyperactivity/other behavioral problems (30%); conotruncal heart defects (15%); and subtle/non-specific facial dysmorphism. The deletion in four out of five cases with cardiac defect was distal to GATA6, suggesting an alternative mechanism other than haploinsufficiency of GATA6 as an underlying cause of cardiac malformations. Precocious puberty with advanced skeletal age was first observed in one patient, suggesting a unique and expanded phenotype of proximal 18q deletion. When comparing genotype-phenotype correlations from the present study with previous reports, the critical regions for selected phenotypes of 18q11-q12 deletion syndrome could be narrowed down as follows: 38.8-43.5 Mb for moderate to severe DD/ID, 19.6-24.4 Mb and 26.9-28.6 Mb for conotruncal heart defect. CONCLUSION: The detailed clinical delineation of the proximal 18q deletions identified in this study should contribute to better understanding of the genotype-phenotype correlations and better long-term care of patients with this rare syndrome.


Assuntos
Anormalidades Múltiplas , Deleção Cromossômica , Cromossomos Humanos Par 18/genética , Bases de Dados Genéticas , Cardiopatias Congênitas , Deficiência Intelectual , Transtornos do Desenvolvimento da Linguagem , Transtornos Mentais , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Pré-Escolar , Feminino , Fator de Transcrição GATA6/genética , Haploinsuficiência , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Masculino , Transtornos Mentais/genética , Transtornos Mentais/patologia
19.
Neurogenetics ; 20(3): 145-154, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31209758

RESUMO

Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~ 3 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1.


Assuntos
Duplicação Cromossômica , Cromossomos Humanos Par 9 , Histona-Lisina N-Metiltransferase/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Hibridização Genômica Comparativa , Bases de Dados Factuais , Feminino , França , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Itália , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Síndrome
20.
Am J Med Genet A ; 179(8): 1615-1621, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145527

RESUMO

Only a few individuals with 12q15 deletion have been described, presenting with a disorder characterized by learning disability, developmental delay, nasal speech, and hypothyroidism. The smallest region of overlap for this syndrome was included in a genomic segment spanning CNOT2, KCNMB4, and PTPRB genes. We report on an additional patient harboring a 12q15 microdeletion encompassing only part of CNOT2 gene, presenting with a spectrum of clinical features overlapping the 12q15 deletion syndrome phenotype. We propose CNOT2 as the phenocritical gene for 12q15 deletion syndrome and its haploinsufficiency being associated with an autosomal dominant disorder, presenting with developmental delay, hypotonia, feeding problems, learning difficulties, nasal speech, skeletal anomalies, and facial dysmorphisms.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Cromossomos Humanos Par 12 , Heterozigoto , Fenótipo , Proteínas Repressoras/genética , Deleção de Sequência , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Haploinsuficiência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA