Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38470791

RESUMO

The global increase in multidrug-resistant bacteria poses a challenge to public health and requires the development of new antibacterial materials. In this study, we examined the bactericidal properties of mesoporous silica-coated silver nanoparticles, varying the core sizes (ca. 28 nm and 51 nm). We also investigated gold nanoparticles (ca. 26 nm) coated with mesoporous silica as possible inert metal cores. To investigate the modification of antimicrobial activity after the surface charge change, we used silver nanoparticles with a silver core of 28 nm coated with a mesoporous shell (ca. 16 nm) and functionalized with a terminal amine group. Furthermore, we developed a facile method to create mesoporous silica-coated silver nanoparticles (Ag@mSiO2) doped films using polyurethane (IROGRAN®) as a polymer matrix via solution casting. The antibacterial effects of silver nanoparticles with different core sizes were analyzed against Gram-negative and Gram-positive bacteria relevant to the healthcare and food industry. The results demonstrated that gold nanoparticles were inert, while silver nanoparticles exhibited antibacterial effects against Gram-negative (Escherichia coli and Salmonella enterica subsp. enterica serovar Choleraesuis) and Gram-positive (Bacillus cereus) strains. In particular, the larger Ag@mSiO2 nanoparticles showed a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) of 18 µg/mL in the Salmonella strain. Furthermore, upon terminal amine functionalization, reversing the surface charge to positive values, there was a significant increase in the antibacterial activity of the NPs compared to their negative counterparts. Finally, the antimicrobial properties of the nanoparticle-doped polyurethane films revealed a substantial improvement in antibacterial efficacy. This study provides valuable information on the potential of mesoporous silica-coated silver nanoparticles and their applications in fighting multidrug-resistant bacteria, especially in the healthcare and food industries.

2.
J Cardiovasc Dev Dis ; 11(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38392250

RESUMO

Achieving health equity in populations with congenital heart disease (CHD) requires recognizing existing disparities throughout the lifespan that negatively and disproportionately impact specific groups of individuals. These disparities occur at individual, institutional, or system levels and often result in increased morbidity and mortality for marginalized or racially minoritized populations (population subgroups (e.g., ethnic, racial, social, religious) with differential power compared to those deemed to hold the majority power in the population). Creating actionable strategies and solutions to address these health disparities in patients with CHD requires critically examining multilevel factors and health policies that continue to drive health inequities, including varying social determinants of health (SDOH), systemic inequities, and structural racism. In this comprehensive review article, we focus on health equity solutions and health policy considerations for minoritized and marginalized populations with CHD throughout their lifespan in the United States. We review unique challenges that these populations may face and strategies for mitigating disparities in lifelong CHD care. We assess ways to deliver culturally competent CHD care and to help lower-health-literacy populations navigate CHD care. Finally, we review system-level health policies that impact reimbursement and research funding, as well as institutional policies that impact leadership diversity and representation in the workforce.

3.
ACS Appl Nano Mater ; 7(1): 498-508, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38229662

RESUMO

Foodborne allergies and illnesses represent a major global health concern. In particular, fish can trigger life-threatening food allergic reactions and poisoning effects, mainly caused by the ingestion of parvalbumin toxin. Additionally, preformed histamine in less-than-fresh fish serves as a toxicological alert. Consequently, the analytical assessment of parvalbumin and histamine levels in fish becomes a critical public health safety measure. The multiplex detection of both analytes has emerged as an important issue. The analytical detection of parvalbumin and histamine requires different assays; while the determination of parvalbumin is commonly carried out by enzyme-linked immunosorbent assay, histamine is analyzed by high-performance liquid chromatography. In this study, we present an approach for multiplexing detection and quantification of trace amounts of parvalbumin and histamine in canned fish. This is achieved through a colorimetric and surface-enhanced Raman-scattering-based competitive lateral flow assay (SERS-LFIA) employing plasmonic nanoparticles. Two distinct SERS nanotags tailored for histamine or ß-parvalbumin detection were synthesized. Initially, spherical 50 nm Au@Ag core-shell nanoparticles (Au@Ag NPs) were encoded with either rhodamine B isothiocyanate (RBITC) or malachite green isothiocyanate (MGITC). Subsequently, these nanoparticles were bioconjugated with anti-ß-parvalbumin and antihistamine, forming the basis for our detection and quantification methodology. Additionally, our approach demonstrates the use of SERS-LFIA for the sensitive and multiplexed detection of parvalbumin and histamine on a single test line, paving the way for on-site detection employing portable Raman instruments.

4.
Clin Proteomics ; 20(1): 54, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017382

RESUMO

BACKGROUND: This study investigates the proteomic landscapes of chromophobe renal cell carcinoma (chRCC) and renal oncocytomas (RO), two subtypes of renal cell carcinoma that together account for approximately 10% of all renal tumors. Despite their histological similarities and shared origins, chRCC is a malignant tumor necessitating aggressive intervention, while RO, a benign growth, is often subject to overtreatment due to difficulties in accurate differentiation. METHODS: We conducted a label-free quantitative proteomic analysis on solid biopsies of chRCC (n = 5), RO (n = 5), and normal adjacent tissue (NAT, n = 5). The quantitative analysis was carried out by comparing protein abundances between tumor and NAT specimens. Our analysis identified a total of 1610 proteins across all samples, with 1379 (85.7%) of these proteins quantified in at least seven out of ten LC‒MS/MS runs for one renal tissue type (chRCC, RO, or NAT). RESULTS: Our findings revealed significant similarities in the dysregulation of key metabolic pathways, including carbohydrate, lipid, and amino acid metabolism, in both chRCC and RO. Compared to NAT, both chRCC and RO showed a marked downregulation in gluconeogenesis proteins, but a significant upregulation of proteins integral to the citrate cycle. Interestingly, we observed a distinct divergence in the oxidative phosphorylation pathway, with RO showing a significant increase in the number and degree of alterations in proteins, surpassing that observed in chRCC. CONCLUSIONS: This study underscores the value of integrating high-resolution mass spectrometry protein quantification to effectively characterize and differentiate the proteomic landscapes of solid tumor biopsies diagnosed as chRCC and RO. The insights gained from this research offer valuable information for enhancing our understanding of these conditions and may aid in the development of improved diagnostic and therapeutic strategies.

5.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37887939

RESUMO

In this study, we propose a novel approach for the silica coating of silver nanoparticles based on surface modification with adenosine monophosphate (AMP). Upon AMP stabilization, the nanoparticles can be transferred into 2-propanol, promoting the growth of silica on the particle surfaces through the standard Stöber process. The obtained silica shells are uniform and homogeneous, and the method allows a high degree of control over shell thickness while minimizing the presence of uncoated NPs or the negligible presence of core-free silica NPs. In addition, AMP-functionalized AgNPs could be also coated with a mesoporous silica shell using cetyltrimethylammonium chloride (CTAC) as a template. Interestingly, the thickness of the mesoporous silica coating could be tightly adjusted by either the silica precursor concentration or by varying the CTAC concentration while keeping the silica precursor concentration constant. Finally, the influence of the silica coating on the antimicrobial effect of AgNPs was studied on Gram-negative bacteria (R. gelatinosus and E. coli) and under different bacterial growth conditions, shedding light on their potential applications in different biological environments.

6.
Nanoscale Adv ; 5(17): 4415-4423, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37638153

RESUMO

This work investigates the potential utilization of Cu(i) as a reducing agent for the transformation of the platinum salt K2PtCl4, resulting in the production of stable nanoparticles. The synthesized nanoparticles exhibit a bimetallic composition, incorporating copper within their final structure. This approach offers a convenient and accessible methodology for the production of bimetallic nanostructures. The catalytic properties of these novel nanomaterials have been explored in various applications, including their use as artificial metalloenzymes and in the degradation of dyes. The findings underscore the significant potential of Cu(i)-mediated reduction in the development of functional nanomaterials with diverse catalytic applications.

7.
J Phys Chem Lett ; 14(27): 6315-6320, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37409744

RESUMO

Bimetallic nanostructures composed of gold (Au) and palladium (Pd) have garnered increased interest for their applications in heterogeneous catalysis. This study reports a simple strategy for manufacturing Au@Pd bimetallic branched nanoparticles (NPs), which offer a tunable optical response, using polyallylamine-stabilized branched AuNPs as template cores for Pd overgrowth. The palladium content can be altered by manipulating the concentration of PdCl42- and ascorbic acid (AA) that are injected, which permit an overgrowth of the Pd shell up to ca. 2 nm thick. The homogeneous distribution of Pd at the surfaces of Au NPs can be carried out regardless of their size or branching degree, which allows for an adjustment of the plasmon response in the near-infrared (NIR) spectral range. As a proof of concept, the nanoenzymatic activity of pure gold and gold-palladium NPs was compared, exploring their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The bimetallic AuPd NPs demonstrate an increase in the catalytic properties attributed to the presence of palladium at the surface of gold.

8.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047582

RESUMO

The need for non-invasive therapies capable of conserving drug efficiency and stability while having specific targetability against colorectal cancer (CRC), has made nanoparticles preferable vehicles and principal building blocks for the development of complex and multi-action anti-tumoral approaches. For that purpose, we herein report the production of a combinatory anti-tumoral nanotherapy using the production of a new targeting towards CRC lines. To do so, Magneto-fluorescent NANO3 nanoparticles were used as nanocarriers for a combination of the drugs doxorubicin (DOX) and ofloxacin (OFLO). NANO3 nanoparticles' surface was modified with two different targeting agents, a newly synthesized (anti-CA IX acetazolamide derivative (AZM-SH)) and a commercially available (anti-epidermal growth factor receptor (EGFR), Cetuximab). The cytotoxicity revealed that only DOX-containing nanosystems showed significant and even competitive cytotoxicity when compared to that of free DOX. Interestingly, surface modification with AZM-SH promoted an increased cellular uptake in the HCT116 cell line, surpassing even those functionalized with Cetuximab. The results show that the new target has high potential to be used as a nanotherapy agent for CRC cells, surpassing commercial targets. As a proof-of-concept, an oral administration form of NANO3 systems was successfully combined with Eudragit® enteric coating and studied under extreme conditions.


Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Cetuximab/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sistemas de Liberação de Medicamentos/métodos
9.
J Proteomics ; 278: 104865, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870676

RESUMO

Bladder cancer (BCa) is a prevalent disease with a high risk of aggressive recurrence in T1-stage patients. Despite the efforts to anticipate recurrence, a reliable method has yet to be developed. In this work, we employed high-resolution mass spectrometry to compare the urinary proteome of T1-stage BCa patients with recurring versus non-recurring disease to uncover actionable clinical information predicting recurrence. All patients were diagnosed with T1-stage bladder cancer between the ages of 51 and 91, and urine samples were collected before medical intervention. Our results suggest that the urinary myeloperoxidase to cubilin ratio could be used as a new tool for predicting recurrence and that dysregulation of the inflammatory and immune systems may be a key driver of disease worsening. Furthermore, we identified neutrophil degranulation and neutrophil extracellular traps (NETs) as key pathways in the progression of T1-stage BCa. We propose that proteomics follow-up of the inflammatory and immune systems may be useful for monitoring the effectiveness of therapy. SIGNIFICANCE: This article describes how proteomics can be used to characterize tumor aggressiveness in patients with the same diagnosis of bladder cancer (BCa). LC-MS/MS in combination with label free quantification (LFQ) were used to explore potential protein and pathway level changes related to the aggressiveness of the disease in 13 and 17 recurring and non-recurring T1 stage BCa patients. We have shown that the MPO/CUBN protein ratio is a candidate for a urine prognosis tool in BCa. Furthermore, we identify dysregulation of inflammation process as a driver for BCa recurrence and progression. Moreover, we propose using proteomics to track the effectiveness of therapy in the inflammatory and immune systems.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Seguimentos , Neoplasias da Bexiga Urinária/diagnóstico , Prognóstico , Biomarcadores Tumorais
10.
Front Oncol ; 13: 1154318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36994202

RESUMO

Lung cancer is a global health problem affecting millions of people each year. Non-small cell lung cancer (NSCLC) is the most common form of lung cancer with various conventional treatment available in the clinic. Application of these treatments alone often results in high rates of cancer reoccurrence and metastasis. In addition, they can cause damage to healthy tissues, resulting in many adverse effects. Nanotechnology has emerged as a modality for the treatment of cancer. When used in combination with nanoparticles, it is possible to improve the pharmacokinetic and pharmacodynamic profiles of pre-existing drugs used in cancer treatment. Nanoparticles have physiochemical properties such as small size which allowing passage through challenging areas of the body, and large surface area allows for higher doses of drugs to be brought to the tumor site. Nanoparticles can be functionalized which involves modifying the surface chemistry of the particles and allows for the conjugation of ligands (small molecules, antibodies, and peptides). Ligands can be chosen for their ability to target components that are specific to or are upregulated in cancer cells, such as targeting receptors on the tumor surface that are highly expressed in the cancer. This ability to precisely target the tumor can improve the efficacy of drugs and decrease toxic side effects. This review will discuss approaches used for targeting drugs to tumors using nanoparticles, provide examples of how this has been applied in the clinic and highlight future prospects for this technology.

11.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772728

RESUMO

Three coumarin-based boron complexes (L1, L2 and L3) were designed and successfully incorporated into polymeric matrixes for evaluation as temperature probes. The photophysical properties of the complexes were carried out in different solvents and in the solid state. In solution, compound L1 exhibited the highest fluorescence quantum yield, 33%, with a positive solvatochromism also being observed on the absorption and emission when the polarity of the solvent increased. Additionally in the presence of anions, L1 showed a colour change from yellow to pink, followed by a quenching in the emission intensity, which is due to deprotonation with the formation of a quinone base. Absorption and fluorescence spectra of L1 were calculated at different temperatures by the DFT/B3LYP method. The decrease in fluorescence of compound L1 with an increase in temperature seems to be due to the presence of pronounced torsional vibrations of the donor and acceptor fragments relative to the single bond with C(carbonyl)-C (styrene fragment). L1, L2 and L3, through their incorporation into the polymeric matrixes, became highly emissive by aggregation. These dye@doped polymers were evaluated as temperature sensors, showing an excellent fluorescent response and reversibility after 15 cycles of heating and cooling.

12.
Commun Med (Lond) ; 3(1): 8, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646893

RESUMO

BACKGROUND: Monitoring bladder cancer over time requires invasive and costly procedures. Less invasive approaches are required using readily available biological samples such as urine. In this study, we demonstrate a method for longitudinal analysis of the urine proteome to monitor the disease course in patients with bladder cancer. METHODS: We compared the urine proteomes of patients who experienced recurrence and/or progression (n = 13) with those who did not (n = 17). We identified differentially expressed proteins within various pathways related to the hallmarks of cancer. The variation of such pathways during the disease course was determined using our differential personal pathway index (dPPi) calculation, which could indicate disease progression and the need for medical intervention. RESULTS: Seven hallmark pathways are used to develop the dPPi. We demonstrate that we can successfully longitudinally monitor the disease course in bladder cancer patients through a combination of urine proteomic analysis and the dPPi calculation, over a period of 62 months. CONCLUSIONS: Using the information contained in the patient's urinary proteome, the dPPi reflects the individual's course of bladder cancer, and helps to optimise the use of more invasive procedures such as cystoscopy.


Bladder cancer must be closely monitored for progression, but this requires expensive and invasive procedures such as cystoscopy. Less invasive procedures using readily available samples such as urine are needed. Here, we present an approach that measures the levels of various proteins in the urine. We compare protein levels at different points during the disease course in patients with bladder cancer, and show this helps to flag disease recurrence and the need for medical intervention. Our approach could help clinicians to determine which patients require more invasive testing and treatment.

13.
J Fluoresc ; 33(3): 799-847, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36576681

RESUMO

Fluorescent organic dyes play an essential role in the creation of new "smart" materials. Fragments and functional groups capable of free rotation around single bonds can significantly change the fluorescent organic dye's electronic structure under analyte effects, phase state transitions, or changes in temperature, pressure, and media polarity. Dependencies between steric and electronic structures become highly important in transition from a solution to a solid-state. Such transitions are accompanied by a significant increase in the dye molecular structure's rigidity due to supramolecular associates' formation such as H-bonding, π···π and dipole-dipole interactions. Among those supramolecular effects, H-bonding interactions, first of all, lead to significant molecular packing changes between loose or rigid structures, thus affecting the fluorescent dye's electronic states' energy and configuration, its fluorescent signal's position and intensity. All the functional groups and heteroatoms that are met in the organic dyes seem to be involved in the control of fluorescence via H-bonding: C-H···N, C-H···π, S = O···H-C, P = O···H, C-H···O, NH···N, C - H···C, C - H···Se, N-H···O, C - H···F, C-F···H. Effects of molecular packing of fluorescent organic dyes are successfully used in developing mechano-, piezo-, thermo- fluorochromes materials for their applications in the optical recording of information, sensors, security items, memory elements, organic light-emitting diodes (OLEDs) technologies.

14.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293142

RESUMO

Cancer-related opportunistic bacterial infections are one major barrier for successful clinical therapies, often correlated to the production of genotoxic factors and higher cancer incidence. Although dual anticancer and antimicrobial therapies are a growing therapeutic fashion, they still fall short when it comes to specific delivery and local action in in vivo systems. Nanoparticles are seen as potential therapeutic vectors, be it by means of their intrinsic antibacterial properties and effective delivery capacity, or by means of their repeatedly reported modulation and maneuverability. Herein we report on the production of a biocompatible, antimicrobial magneto-fluorescent nanosystem (NANO3) for the delivery of a dual doxorubicin-ofloxacin formulation against cancer-related bacterial infections. The drug delivery capacity, rendered by its mesoporous silica matrix, is confirmed by the high loading capacity and stimuli-driven release of both drugs, with preference for tumor-like acidic media. The pH-dependent emission of its surface fluorescent SiQDs, provides an insight into NANO3 surface behavior and pore availability, with the SiQDs working as pore gates. Hyperthermia induces heat generation to febrile temperatures, doubling drug release. NANO3-loaded systems demonstrate significant antimicrobial activity, specifically after the application of hyperthermia conditions. NANO3 structure and antimicrobial properties confirm their potential use in a future dual anticancer and antimicrobial therapeutical vector, due to their drug loading capacity and their surface availability for further modification with bioactive, targeting species.


Assuntos
Anti-Infecciosos , Neoplasias Colorretais , Hipertermia Induzida , Nanopartículas , Humanos , Portadores de Fármacos/química , Ofloxacino , Porosidade , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/química , Dióxido de Silício/química , Nanopartículas/química , Liberação Controlada de Fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos
15.
J Hazard Mater ; 440: 129768, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027754

RESUMO

Every two years, the Pollutant Toxic Ions and Molecules Conference, PTIM, meets the environmentalist, biologist, chemists and health researchers in Costa de Caparica, Portugal, to showcase the latest technologies, methodologies and research advances in pollution detection, contamination control, remediation, and related health issues, as well as policy implications.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Poluentes Ambientais/toxicidade , Poluição Ambiental , Íons , Pandemias
16.
Macromol Biosci ; 22(12): e2200244, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36004698

RESUMO

The rising of multidrug-resistant bacteria and their associated proliferation as harmful microorganisms boosts the creation of new antibacterial surfaces and biomaterials with applications ranging from health to food packing. Herein, low-cost antibacterial PVA:PVP copolymers containing cyanine derivatives (1, 2, and 3) and their respective Cu2+ complexes are successfully obtained and tested against Gram-negative and Gram-positive bacteria. The possible application in food packing is addressed by covering the surface of typical paper mockups with the doped polymers. All dye-doped polymers present a broad-spectrum antibacterial effect against Gram-positive bacteria, especially for Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), and methicillin-resistant S. aureus (MRSA) strains, with PVA:PVP@3 and PVA:PVP@3-Cu being the most effective. Moreover, polymers containing cyanine derivatives present interesting inhibition effects against Pseudomonas aeruginosa (P. aeruginosa), where the production of its characteristic blue/green virulent pigment is not observed. Of the coated paper mockups, PVA:PVP:paper@2 and PVA:PVP:paper@2-Cu are most effective against B. cereus and S. aureus, while PVA:PVP:paper@3 and PVA:PVP:paper@3-Cu are most effective against the MRSA strain. In these formulations, direct contact inhibition mechanisms appear to be more significant than diffusional mechanisms, due to cyanine release hindrance, making them very interesting and versatile platforms for medical and food applications.


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Pseudomonas aeruginosa , Bactérias Gram-Positivas , Polímeros/farmacologia , Testes de Sensibilidade Microbiana
17.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807997

RESUMO

The use of nanoparticles in multiple industries has raised concerned voices about the assessment of their toxicity/antimicrobial activity and the development of standardized handling protocols. Issues emerge during the antimicrobial assaying of multiple cargo, colorimetric, colloidal nanoformulations, as standard protocols often rely on visual evaluations, or optical density (OD) measurements, leading to high variance inhibitory concentrations (MIC). Thus, a fast, luminescence-based assay for the effective assessment of the antimicrobial activity of nanoparticles is herein reported, using the bioluminescence of an in-house E. coli ATCC® 8739TM construct with the pMV306G13 + Lux plasmid (E. coli Lux). The new strain's sensitivity to ofloxacin as a standard antibiotic was confirmed, and the methodology robustness verified against multiple nanoparticles and colorimetric drugs. The reduction of incubation from 24 to only 8 h, and the sole use of luminescence (LUX490) to accurately determine and distinguish MIC50 and MIC90, are two main advantages of the method. By discarding OD measurements, one can avoid turbidity and color interferences when calculating bacterial growth. This approach is an important tool that contributes to the standardization of methods, reducing samples' background interference and focusing on luminescence as a direct probe for bacterial metabolic activity, growth and, most importantly, the correct assessment of nanomaterials' antimicrobial activity.

18.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886956

RESUMO

An efficient synthetic access to new cationic porphyrin-bipyridine iridium(III) bis-cyclometalated complexes was developed. These porphyrins bearing arylbipyridine moieties at ß-pyrrolic positions coordinated with iridium(III), and the corresponding Zn(II) porphyrin complexes were spectroscopically, electrochemically, and electronically characterized. The features displayed by the new cyclometalated porphyrin-bipyridine iridium(III) complexes, namely photoinduced electron transfer process (PET), and a remarkable efficiency to generate 1O2, allowing us to envisage new challenges and opportunities for their applications in several fields, such as photo(catalysis) and photodynamic therapies.


Assuntos
Irídio , Porfirinas , Cátions , Transporte de Elétrons , Irídio/química , Ligantes
19.
J Colloid Interface Sci ; 611: 695-705, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34979340

RESUMO

This paper describes the synthesis of highly branched gold nanoparticles (AuNPs) through a facile seeded growth approach using poly(allylamine hydrochloride) (PAH) as shape inducing agent. The obtained branched AuNPs present highly tunable optical properties in the Vis-NIR region from ca. 560 nm to 1260 nm. We controlled the morphology, and therefore the optical response, of the NPs by either changing the gold salt to seeds ratio or by fine-tuning the solution pH. We proposed that the formation of size-dependent PAH-AuCl4- aggregates as demonstrated by dynamic light scattering measurements, together with pH-dependent gold salt speciation might be responsible for the branched morphology. Advanced electron microscopy techniques demonstrated the polycrystalline nature of the AuNPs and facilitated a better understanding of branched morphology. Additionally, the refractive index sensitivity estimated by the inflection point of the Localized Surface Plasmon Resonance (LSPR) band can be controlled by tuning the nanoparticle branching. Furthermore, the versatility of the PAH chemistry allowed the easy functionalization of the synthesized NPs.


Assuntos
Ouro , Nanopartículas Metálicas , Poliaminas , Refratometria , Ressonância de Plasmônio de Superfície
20.
Nanomaterials (Basel) ; 11(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34947786

RESUMO

Polymer nanoparticles doped with fluorescent molecules are widely applied for biological assays, local temperature measurements, and other bioimaging applications, overcoming several critical drawbacks, such as dye toxicity, increased water solubility, and allowing imaging of dyes/drug delivery in water. In this work, some polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP) and poly(styrene-butadiene-styrene) (SBS) based micro and nanoparticles with an average size of about 200 nm and encapsulating B(III) compounds have been prepared via the reprecipitation method by using tetrahydrofuran as the oil phase and water. The compounds are highly hydrophobic, but their encapsulation into a polymer matrix allows obtaining stable colloidal dispersions in water (3.39 µM) that maintain the photophysical behavior of these dyes. Although thermally activated non-radiative processes occur by increasing temperature from 25 to 80 °C, the colloidal suspension of the B(III) particles continues to emit greenish light (λ = 509 nm) at high temperatures. When samples are cooling back to room temperature, the emission is restored, being reversible. A probe of concept drug delivery study was conducted using coumarin 6 as a prototype of a hydrophobic drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...