Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 13(3): 1111-22, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26836258

RESUMO

In this article, we highlight the benefits coming from the application of amorphous protic ionic systems as active pharmaceutical ingredients (APIs). Using the case of the sumatriptan (STR) drug, we show that the conversion of nonionic API to partially ionized amorphous protic succinate salt (STR SUCC) brings a substantial improvement in apparent solubility. Since in general the disordered systems reveal a tendency to self-arrangement during storage, the dominant part of this article is dedicated to the physical stability issue of sumatriptan and its ionic counterpart. To recognize the crystallization tendency of the studied systems, the calorimetric measurements were performed. Additionally, the role of ion dynamics in spontaneous nucleation of amorphous sumatriptan succinate is discussed. The differential scanning calorimetry analysis of ionic and nonionic sumatriptan reveals many similarities in thermal properties of these APIs as well as distinct differences in their resistance against crystallization in the supercooled liquid state. To determine the long-term physical stability of STR SUCC at room temperature conditions, the time scale of structural relaxation below their glass transition temperatures is estimated. We show that in contrast to nonionic materials, τα predictions of STR SUCC are much more complex and require aging experiments.


Assuntos
Estabilidade de Medicamentos , Líquidos Iônicos , Ácido Succínico/química , Sumatriptana/química , Varredura Diferencial de Calorimetria , Cristalização , Solubilidade , Temperatura de Transição , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA