Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 13(4)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38666885

RESUMO

Serological assays for SARS-CoV-2 play a pivotal role in the definition of whether patients are infected, the understanding of viral epidemiology, the screening of convalescent sera for therapeutic and prophylactic purposes, and in obtaining a better understanding of the immune response towards the virus. The aim of this study was to investigate the performance of a bead-based multiplex assay. This assay allowed for the simultaneous testing of IgG antibodies against SARS-CoV-2 spike, S1, S2, RBD, and nucleocapsid moieties and S1 of seasonal coronaviruses hCoV-22E, hCoV-HKU1, hCoV-NL63, and hCoV-OC43, as well as MERS and SARS-CoV. We compared the bead-based multiplex assay with commercial ELISA tests. We tested the sera of 27 SARS-CoV-2 PCR-positive individuals who were previously tested with different ELISA assays. Additionally, we investigated the reproducibility of the results by means of multiple testing of the same sera. Finally, the results were correlated with neutralising assays. In summary, the concordance of the qualitative results ranged between 78% and 96% depending on the ELISA assay and the specific antigen. Repeated freezing-thawing cycles resulted in reduced mean fluorescence intensity, while the storage period had no influence in this respect. In our test cohort, we detected up to 36% of sera positive for the development of neutralising antibodies, which is in concordance with the bead-based multiplex and IgG ELISA.

2.
Biology (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37997984

RESUMO

We addressed the question of the influence of the molecular polymorphism of cytokines from different T helper subsets on the susceptibility to SARS-CoV-2 infection. From a cohort of 527 samples (collected from 26 May 2020 to 31 March 2022), we focused on individuals living in the same household (n = 58) with the SARS-CoV-2-infected person. We divided them into households with all individuals SARS-CoV-2 PCR positive (n = 29, households, 61 individuals), households with mixed PCR pattern (n = 24, 62) and negative households (n = 5, 15), respectively. TGF-ß1 and IL-6 were the only cytokines tested with a significant difference between the cohorts. We observed a shift toward Th2 and the regulatory Th17 and Treg subset regulation for households with all members infected compared to those without infection. These data indicate that the genetically determined balance between the cytokines acting on different T helper cell subsets may play a pivotal role in transmission of and susceptibility to SARS-CoV-2 infection. Contacts infected by their index persons were more likely to highly express TGF-ß1, indicating a reduced inflammatory response. Those not infected after contact had a polymorphism leading to a higher IL-6 expression. IL-6 acts in innate immunity, allergy and on the T helper cell differentiation, explaining the reduced susceptibility to SARS-CoV-2.

3.
Biology (Basel) ; 12(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37887003

RESUMO

During the coronavirus pandemic, evidence is growing that the severity, susceptibility and host immune response to SARS-CoV-2 infection can be highly variable. Several influencing factors have been discussed. Here, we investigated the humoral immune response against SARS-CoV-2 spike, S1, S2, the RBD, nucleocapsid moieties and S1 of seasonal coronaviruses: hCoV-229E, hCoV-HKU1, hCoV-NL63 and hCoV-OC43, as well as MERS-CoV and SARS-CoV, in a cohort of 512 individuals. A bead-based multiplex assay allowed simultaneous testing for all the above antigens and the identification of different antibody patterns. Then, we correlated these patterns with 11 HLA loci. Regarding the seasonal coronaviruses, we found a moderate negative correlation between antibody levels against hCoV-229E, hCoV-HKU1 and hCoV-NL63 and the SARS-CoV-2 antigens. This could be an indication of the original immunological imprinting. High and low antibody response patterns were distinguishable, demonstrating the individuality of the humoral response towards the virus. An immunogenetical factor associated with a high antibody response (formation of ≥4 different antibodies) was the presence of HLA A*26:01, C*02:02 and DPB1*04:01 alleles, whereas the HLA alleles DRB3*01:01, DPB1*03:01 and DB1*10:01 were enriched in low responders. A better understanding of this variable immune response could enable more individualized protective measures.

4.
Eur J Immunol ; 53(11): e2250354, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37540729

RESUMO

RATIONALE: Psoriasis is a chronic inflammatory skin disease involving different cytokines and chemokines. OBJECTIVES: Here we use single-cell transcriptomic analyses to identify relevant immune cell and nonimmune cell populations for an in-depth characterization of cell types and inflammatory mediators in this disease. METHODS: Psoriasis skin lesions of eight patients are analyzed using single-cell technology. Data are further validated by in situ hybridization (ISH) of human tissues, serum analyses of human samples and tissues of a murine model of psoriasis, and by in vitro cell culture experiments. RESULTS: Several different immune-activated cell types with particular cytokine patterns are identified such as keratinocytes, T-helper cells, dendritic cells, macrophages, and fibroblasts. Apart from well-known factors, IL-14 (TXLNA), IL-18, and IL-32 are identified with prominent expression in individual cell types in psoriasis. The percentage of inflammatory cellular subtypes expressing IL-14, IL-18, and IL-32 was significantly higher in psoriatic skin compared with healthy control skin. These findings were confirmed by ISH of human skin samples, in a murine model of psoriasis, in human serum samples, and in in vitro experiments. CONCLUSIONS: Taken together, we provide a differentiated view of psoriasis immune-cell phenotypes that support the role of IL-14, IL-18, and IL-32 in psoriasis pathogenesis.


Assuntos
Interleucina-18 , Psoríase , Humanos , Camundongos , Animais , Interleucina-18/genética , Interleucina-18/metabolismo , Modelos Animais de Doenças , Transcriptoma , Psoríase/genética , Pele/patologia , Queratinócitos , Citocinas/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
5.
Cancers (Basel) ; 15(15)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37568651

RESUMO

The molecular mechanisms of the liver metastasis of colorectal cancer (CRLM) remain poorly understood. Here, we applied machine learning and bioinformatics trajectory inference to analyze a gene expression dataset of CRLM. We studied the co-regulation patterns at the gene level, the potential paths of tumor development, their functional context, and their prognostic relevance. Our analysis confirmed the subtyping of five liver metastasis subtypes (LMS). We provide gene-marker signatures for each LMS, and a comprehensive functional characterization that considers both the hallmarks of cancer and the tumor microenvironment. The ordering of CRLMs along a pseudotime-tree revealed a continuous shift in expression programs, suggesting a developmental relationship between the subtypes. Notably, trajectory inference and personalized analysis discovered a range of epigenetic states that shape and guide metastasis progression. By constructing prognostic maps that divided the expression landscape into regions associated with favorable and unfavorable prognoses, we derived a prognostic expression score. This was associated with critical processes such as epithelial-mesenchymal transition, treatment resistance, and immune evasion. These factors were associated with responses to neoadjuvant treatment and the formation of an immuno-suppressive, mesenchymal state. Our machine learning-based molecular profiling provides an in-depth characterization of CRLM heterogeneity with possible implications for treatment and personalized diagnostics.

6.
Front Immunol ; 13: 994885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248848

RESUMO

Anti-CD19 CAR-T cell immunotherapy is a hopeful treatment option for patients with B cell lymphomas, however it copes with partly severe adverse effects like neurotoxicity. Single-cell resolved molecular data sets in combination with clinical parametrization allow for comprehensive characterization of cellular subpopulations, their transcriptomic states, and their relation to the adverse effects. We here present a re-analysis of single-cell RNA sequencing data of 24 patients comprising more than 130,000 cells with focus on cellular states and their association to immune cell related neurotoxicity. For this, we developed a single-cell data portraying workflow to disentangle the transcriptional state space with single-cell resolution and its analysis in terms of modularly-composed cellular programs. We demonstrated capabilities of single-cell data portraying to disentangle transcriptional states using intuitive visualization, functional mining, molecular cell stratification, and variability analyses. Our analysis revealed that the T cell composition of the patient's infusion product as well as the spectrum of their transcriptional states of cells derived from patients with low ICANS grade do not markedly differ from those of cells from high ICANS patients, while the relative abundancies, particularly that of cycling cells, of LAG3-mediated exhaustion and of CAR positive cells, vary. Our study provides molecular details of the transcriptomic landscape with possible impact to overcome neurotoxicity.


Assuntos
Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Antígenos CD19 , Humanos , Imunoterapia Adotiva/efeitos adversos , Síndromes Neurotóxicas/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
7.
Methods Inf Med ; 61(S 02): e103-e115, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35915977

RESUMO

BACKGROUND: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible. Related models are often not accessible as a functional program tool for interested users from the health care and biomedical domains. OBJECTIVE: The interdisciplinary project Leipzig Health Atlas (LHA) was developed to close this gap. LHA is an online platform that serves as a sustainable archive providing medical data, metadata, models, and novel phenotypes from clinical trials, epidemiological studies, and other medical research projects. METHODS: Data, models, and phenotypes are described by semantically rich metadata. The platform prefers to share data and models presented in original publications but is also open for nonpublished data. LHA provides and associates unique permanent identifiers for each dataset and model. Hence, the platform can be used to share prepared, quality-assured datasets and models while they are referenced in publications. All managed data, models, and phenotypes in LHA follow the FAIR principles, with public availability or restricted access for specific user groups. RESULTS: The LHA platform is in productive mode (https://www.health-atlas.de/). It is already used by a variety of clinical trial and research groups and is becoming increasingly popular also in the biomedical community. LHA is an integral part of the forthcoming initiative building a national research data infrastructure for health in Germany.


Assuntos
Estudos Prospectivos , Alemanha
8.
Cancers (Basel) ; 14(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35884496

RESUMO

Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.

9.
Cancers (Basel) ; 14(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35681780

RESUMO

Multi-omics high-throughput technologies produce data sets which are not restricted to only one but consist of multiple omics modalities, often as patient-matched tumour specimens. The integrative analysis of these omics modalities is essential to obtain a holistic view on the otherwise fragmented information hidden in this data. We present an intuitive method enabling the combined analysis of multi-omics data based on self-organizing maps machine learning. It "portrays" the expression, methylation and copy number variations (CNV) landscapes of each tumour using the same gene-centred coordinate system. It enables the visual evaluation and direct comparison of the different omics layers on a personalized basis. We applied this combined molecular portrayal to lower grade gliomas, a heterogeneous brain tumour entity. It classifies into a series of molecular subtypes defined by genetic key lesions, which associate with large-scale effects on DNA methylation and gene expression, and in final consequence, drive with cell fate decisions towards oligodendroglioma-, astrocytoma- and glioblastoma-like cancer cell lineages with different prognoses. Consensus modes of concerted changes of expression, methylation and CNV are governed by the degree of co-regulation within and between the omics layers. The method is not restricted to the triple-omics data used here. The similarity landscapes reflect partly independent effects of genetic lesions and DNA methylation with consequences for cancer hallmark characteristics such as proliferation, inflammation and blocked differentiation in a subtype specific fashion. It can be extended to integrate other omics features such as genetic mutation, protein expression data as well as extracting prognostic markers.

10.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159171

RESUMO

Mutually linked expression and methylation dynamics in the brain govern genome regulation over the whole lifetime with an impact on cognition, psychological disorders, and cancer. We performed a joint study of gene expression and DNA methylation of brain tissue originating from the human prefrontal cortex of individuals across the lifespan to describe changes in cellular programs and their regulation by epigenetic mechanisms. The analysis considers previous knowledge in terms of functional gene signatures and chromatin states derived from independent studies, aging profiles of a battery of chromatin modifying enzymes, and data of gliomas and neuropsychological disorders for a holistic view on the development and aging of the brain. Expression and methylation changes from babies to elderly adults decompose into different modes associated with the serial activation of (brain) developmental, learning, metabolic and inflammatory functions, where methylation in gene promoters mostly represses transcription. Expression of genes encoding methylome modifying enzymes is very diverse reflecting complex regulations during lifetime which also associates with the marked remodeling of chromatin between permissive and restrictive states. Data of brain cancer and psychotic disorders reveal footprints of pathophysiologies related to brain development and aging. Comparison of aging brains with gliomas supports the view that glioblastoma-like and astrocytoma-like tumors exhibit higher cellular plasticity activated in the developing healthy brain while oligodendrogliomas have a more stable differentiation hierarchy more resembling the aged brain. The balance and specific shifts between volatile and stable and between more irreversible and more plastic epigenomic networks govern the development and aging of healthy and diseased brain.


Assuntos
Epigenoma , Glioma , Adulto , Idoso , Envelhecimento/genética , Envelhecimento/metabolismo , Encéfalo/metabolismo , Cromatina/metabolismo , Metilação de DNA/genética , Glioma/genética , Glioma/metabolismo , Humanos , Lactente , Transcriptoma/genética
11.
Biology (Basel) ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36671730

RESUMO

Herein, we included 527 individuals from two Hospitals, Chemnitz and University-Hospital Leipzig. In total, 199 were negative for PCR and 328 were positive upon first admission. We used next generation sequencing for HLA-A, B, C, DRB1, DRB345, DQA1, DQB1, DPA1, and DPB1, and in some cases, HLA-E, F, G, and H. Furthermore, we molecularly defined 22 blood group systems comprising 26 genes and 5 platelet antigen genes. We observed a significant enrichment of homozygosity for DQA/DQB in the positive group. Within the negative subjects, HLA-B*57:01, HLA-B*55:01, DRB1*13:01, and DRB1*01:01 were enriched, and in the positive group, homozygosity for DQA/DQB, DRB1*09:01, and DRB1*15:01 was observed. DQA1*01:01, DQA1*02:01, and DQA1*01:03 were enriched in the negative group. HLA-DQB1*06:02 was enriched in the positive group, and HLA-DQB1*05:01 and HLA-DQB1*06:03 were enriched in the negative group. For the blood group systems MNS, RH, LE, FY, JK, YT, DO, and KN, enrichment was seen in both groups, depending on the antigen under observation. Homozygosity for D-positive RHD alleles, as well as the phenotypes M-N+ of the MNS blood group system and Yk(a-) of the KN system, were enriched in the positive group. All of these significances disappeared upon correction. Subjects who carried homozygous HPA-1a were more frequent in the negative group, contrasting with the finding that HPA-1ab was enriched in the positive group.

12.
BMC Genomics ; 22(1): 715, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600492

RESUMO

BACKGROUND: Sinoatrial Node (SAN) is part of the cardiac conduction system, which controls the rhythmic contraction of the vertebrate heart. The SAN consists of a specialized pacemaker cell population that has the potential to generate electrical impulses. Although the SAN pacemaker has been extensively studied in mammalian and teleost models, including the zebrafish, their molecular nature remains inadequately comprehended. RESULTS: To characterize the molecular profile of the zebrafish sinoatrial ring (SAR) and elucidate the mechanism of pacemaker function, we utilized the transgenic line sqet33mi59BEt to isolate cells of the SAR of developing zebrafish embryos and profiled their transcriptome. Our analyses identified novel candidate genes and well-known conserved signaling pathways involved in pacemaker development. We show that, compared to the rest of the heart, the zebrafish SAR overexpresses several mammalian SAN pacemaker signature genes, which include hcn4 as well as those encoding calcium- and potassium-gated channels. Moreover, genes encoding components of the BMP and Wnt signaling pathways, as well as members of the Tbx family, which have previously been implicated in pacemaker development, were also overexpressed in the SAR. Among SAR-overexpressed genes, 24 had human homologues implicated in 104 different ClinVar phenotype entries related to various forms of congenital heart diseases, which suggest the relevance of our transcriptomics resource to studying human heart conditions. Finally, functional analyses of three SAR-overexpressed genes, pard6a, prom2, and atp1a1a.2, uncovered their novel role in heart development and physiology. CONCLUSION: Our results established conserved aspects between zebrafish and mammalian pacemaker function and revealed novel factors implicated in maintaining cardiac rhythm. The transcriptome data generated in this study represents a unique and valuable resource for the study of pacemaker function and associated heart diseases.


Assuntos
Peixe-Zebra , Animais , Frequência Cardíaca , Humanos , Nó Sinoatrial , Transcriptoma , Peixe-Zebra/genética
13.
Cancer Biol Med ; 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591417

RESUMO

OBJECTIVE: Cellular heterogeneity is regarded as a major factor affecting treatment response and resistance in malignant melanoma. Recent developments in single-cell sequencing technology have provided deeper insights into these mechanisms. METHODS: Here, we analyzed a BRAFV600E-mutant melanoma cell line by single-cell RNA-seq under various conditions: cells sensitive to BRAF inhibition with BRAF inhibitor vemurafenib and cells resistant to BRAF inhibition with vemurafenib alone or vemurafenib in combination with the MEK1/2 inhibitors cobimetinib or trametinib. Dimensionality reduction by t-distributed stochastic neighbor embedding and self-organizing maps identified distinct trajectories of resistance development clearly separating the 4 treatment conditions in cell and gene state space. RESULTS: Trajectories associated with resistance to single-agent treatment involved cell cycle, extracellular matrix, and de-differentiation programs. In contrast, shifts detected in double-resistant cells primarily affected translation and mitogen-activated protein kinase pathway reactivation, with a small subpopulation showing markers of pluripotency. These findings were validated in pseudotime analyses and RNA velocity measurements. CONCLUSIONS: The single-cell transcriptomic analyses reported here employed a spectrum of bioinformatics methods to identify mechanisms of melanoma resistance to single- and double-agent treatments. This study deepens our understanding of treatment-induced cellular reprogramming and plasticity in melanoma cells and identifies targets of potential relevance to the management of treatment resistance.

14.
Viruses ; 13(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34578345

RESUMO

Surveillance of the evolving SARS-CoV-2 genome combined with epidemiological monitoring and emerging vaccination became paramount tasks to control the pandemic which is rapidly changing in time and space. Genomic surveillance must combine generation and sharing sequence data with appropriate bioinformatics monitoring and analysis methods. We applied molecular portrayal using self-organizing maps machine learning (SOM portrayal) to characterize the diversity of the virus genomes, their mutual relatedness and development since the beginning of the pandemic. The genetic landscape obtained visualizes the relevant mutations in a lineage-specific fashion and provides developmental paths in genetic state space from early lineages towards the variants of concern alpha, beta, gamma and delta. The different genes of the virus have specific footprints in the landscape reflecting their biological impact. SOM portrayal provides a novel option for 'bioinformatics surveillance' of the pandemic, with strong odds regarding visualization, intuitive perception and 'personalization' of the mutational patterns of the virus genomes.


Assuntos
COVID-19/virologia , Evolução Molecular , Variação Genética , Genoma Viral , SARS-CoV-2/genética , COVID-19/epidemiologia , Biologia Computacional , Genômica/métodos , Humanos , Incidência , Mutação , Pandemias , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/classificação
15.
Cancers (Basel) ; 13(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206856

RESUMO

Molecular mechanisms of lower-grade (II-III) diffuse gliomas (LGG) are still poorly understood, mainly because of their heterogeneity. They split into astrocytoma- (IDH-A) and oligodendroglioma-like (IDH-O) tumors both carrying mutations(s) at the isocitrate dehydrogenase (IDH) gene and into IDH wild type (IDH-wt) gliomas of glioblastoma resemblance. We generated detailed maps of the transcriptomes and DNA methylomes, revealing that cell functions divided into three major archetypic hallmarks: (i) increased proliferation in IDH-wt and, to a lesser degree, IDH-O; (ii) increased inflammation in IDH-A and IDH-wt; and (iii) the loss of synaptic transmission in all subtypes. Immunogenic properties of IDH-A are diverse, partly resembling signatures observed in grade IV mesenchymal glioblastomas or in grade I pilocytic astrocytomas. We analyzed details of coregulation between gene expression and DNA methylation and of the immunogenic micro-environment presumably driving tumor development and treatment resistance. Our transcriptome and methylome maps support personalized, case-by-case views to decipher the heterogeneity of glioma states in terms of data portraits. Thereby, molecular cartography provides a graphical coordinate system that links gene-level information with glioma subtypes, their phenotypes, and clinical context.

16.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281234

RESUMO

Genetic splice variants have become of central interest in recent years, as they play an important role in different cancers. Little is known about splice variants in melanoma. Here, we analyzed a genome-wide transcriptomic dataset of benign melanocytic nevi and primary melanomas (n = 80) for the expression of specific splice variants. Using kallisto, a map for differentially expressed splice variants in melanoma vs. benign melanocytic nevi was generated. Among the top genes with differentially expressed splice variants were Ras-related in brain 6B (RAB6B), a member of the RAS family of GTPases, Macrophage Scavenger Receptor 1 (MSR1), Collagen Type XI Alpha 2 Chain (COLL11A2), and LY6/PLAUR Domain Containing 1 (LYPD1). The Gene Ontology terms of differentially expressed splice variants showed no enrichment for functional gene sets of melanoma vs. nevus lesions, but between type 1 (pigmentation type) and type 2 (immune response type) melanocytic lesions. A number of genes such as Checkpoint Kinase 1 (CHEK1) showed an association of mutational patterns and occurrence of splice variants in melanoma. Moreover, mutations in genes of the splicing machinery were common in both benign nevi and melanomas, suggesting a common mechanism starting early in melanoma development. Mutations in some of these genes of the splicing machinery, such as Serine and Arginine Rich Splicing Factor A3 and B3 (SF3A3, SF3B3), were significantly enriched in melanomas as compared to benign nevi. Taken together, a map of splice variants in melanoma is presented that shows a multitude of differentially expressed splice genes between benign nevi and primary melanomas. The underlying mechanisms may involve mutations in genes of the splicing machinery.


Assuntos
Processamento Alternativo , Melanoma/metabolismo , Nevo Pigmentado/metabolismo , Neoplasias Cutâneas/metabolismo , Transcriptoma , Estudos de Casos e Controles , Humanos , Melanoma/classificação , Melanoma/genética , Mutação , Isoformas de Proteínas/genética , Neoplasias Cutâneas/classificação , Neoplasias Cutâneas/genética
17.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806322

RESUMO

Coeliac disease (CD) is a clinically heterogeneous autoimmune disease with variable presentation and progression triggered by gluten intake. Molecular or genetic factors contribute to disease heterogeneity, but the reasons for different outcomes are poorly understood. Transcriptome studies of tissue biopsies from CD patients are scarce. Here, we present a high-resolution analysis of the transcriptomes extracted from duodenal biopsies of 24 children and adolescents with active CD and 21 individuals without CD but with intestinal afflictions as controls. The transcriptomes of CD patients divide into three groups-a mixed group presenting the control cases, and CD-low and CD-high groups referring to lower and higher levels of CD severity. Persistence of symptoms was weakly associated with subgroup, but the highest marsh stages were present in subgroup CD-high, together with the highest cell cycle rates as an indicator of virtually complete villous atrophy. Considerable variation in inflammation-level between subgroups was further deciphered into immune cell types using cell type de-convolution. Self-organizing maps portrayal was applied to provide high-resolution landscapes of the CD-transcriptome. We find asymmetric patterns of miRNA and long non-coding RNA and discuss the effect of epigenetic regulation. Expression of genes involved in interferon gamma signaling represent suitable markers to distinguish CD from non-CD cases. Multiple pathways overlay in CD biopsies in different ways, giving rise to heterogeneous transcriptional patterns, which potentially provide information about etiology and the course of the disease.


Assuntos
Doença Celíaca/genética , Adolescente , Estudos de Casos e Controles , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Criança , Pré-Escolar , Epigênese Genética , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Marcadores Genéticos , Humanos , Lactente , Interferon gama/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/imunologia , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Aprendizado de Máquina , Masculino , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Índice de Gravidade de Doença , Transcriptoma
18.
J Clin Med ; 10(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535416

RESUMO

Cellular heterogeneity is regarded as a major factor for treatment response and resistance in a variety of malignant tumors, including malignant melanoma. More recent developments of single-cell sequencing technology provided deeper insights into this phenomenon. Single-cell data were used to identify prognostic subtypes of melanoma tumors, with a special emphasis on immune cells and fibroblasts in the tumor microenvironment. Moreover, treatment resistance to checkpoint inhibitor therapy has been shown to be associated with a set of differentially expressed immune cell signatures unraveling new targetable intracellular signaling pathways. Characterization of T cell states under checkpoint inhibitor treatment showed that exhausted CD8+ T cell types in melanoma lesions still have a high proliferative index. Other studies identified treatment resistance mechanisms to targeted treatment against the mutated BRAF serine/threonine protein kinase including repression of the melanoma differentiation gene microphthalmia-associated transcription factor (MITF) and induction of AXL receptor tyrosine kinase. Interestingly, treatment resistance mechanisms not only included selection processes of pre-existing subclones but also transition between different states of gene expression. Taken together, single-cell technology has provided deeper insights into melanoma biology and has put forward our understanding of the role of tumor heterogeneity and transcriptional plasticity, which may impact on innovative clinical trial designs and experimental approaches.

19.
Genes (Basel) ; 11(10)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081343

RESUMO

Single-cell RNA sequencing has become a standard technique to characterize tissue development. Hereby, cross-sectional snapshots of the diversity of cell transcriptomes were transformed into (pseudo-) longitudinal trajectories of cell differentiation using computational methods, which are based on similarity measures distinguishing cell phenotypes. Cell development is driven by alterations of transcriptional programs e.g., by differentiation from stem cells into various tissues or by adapting to micro-environmental requirements. We here complement developmental trajectories in cell-state space by trajectories in gene-state space to more clearly address this latter aspect. Such trajectories can be generated using self-organizing maps machine learning. The method transforms multidimensional gene expression patterns into two dimensional data landscapes, which resemble the metaphoric Waddington epigenetic landscape. Trajectories in this landscape visualize transcriptional programs passed by cells along their developmental paths from stem cells to differentiated tissues. In addition, we generated developmental "vector fields" using RNA-velocities to forecast changes of RNA abundance in the expression landscapes. We applied the method to tissue development of planarian as an illustrative example. Gene-state space trajectories complement our data portrayal approach by (pseudo-)temporal information about changing transcriptional programs of the cells. Future applications can be seen in the fields of tissue and cell differentiation, ageing and tumor progression and also, using other data types such as genome, methylome, and also clinical and epidemiological phenotype data.


Assuntos
Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Platelmintos/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Células-Tronco/metabolismo , Transcriptoma , Algoritmos , Animais , Diferenciação Celular , Aprendizado de Máquina , Platelmintos/crescimento & desenvolvimento , Células-Tronco/citologia
20.
BMC Bioinformatics ; 21(1): 465, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076824

RESUMO

BACKGROUND: oposSOM is a comprehensive, machine learning based open-source data analysis software combining functionalities such as diversity analyses, biomarker selection, function mining, and visualization. RESULTS: These functionalities are now available as interactive web-browser application for a broader user audience interested in extracting detailed information from high-throughput omics data sets pre-processed by oposSOM. It enables interactive browsing of single-gene and gene set profiles, of molecular 'portrait landscapes', of associated phenotype diversity, and signalling pathway activation patterns. CONCLUSION: The oposSOM-Browser makes available interactive data browsing for five transcriptome data sets of cancer (melanomas, B-cell lymphomas, gliomas) and of peripheral blood (sepsis and healthy individuals) at www.izbi.uni-leipzig.de/opossom-browser .


Assuntos
Atenção à Saúde , Genômica , Software , Navegador , Humanos , Linfoma de Células B/genética , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...