Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Nutr ; 125(9): 972-982, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32594917

RESUMO

To induce diet-induced obesity (DIO) in rodents, diets high in saturated fat and/or carbohydrates are commonly used. In the laboratory, standardised diets evolved over time without paying particular attention to the effect of fat composition on metabolic alterations. In the present study, customised high-fat diets (HFD) enriched with a combination of lard and different concentrations of New Zealand green-lipped mussel (Perna canaliculus) oil or MSC Hoki (Macruronus novaezelandiae, blue grenadier) liver oil, important sources of n-3 PUFA, in comparison with a solely lard-based diet, were fed to lean and DIO male C57BL/6 mice and their effects on metabolic parameters were monitored. Intriguingly, an isoenergetic HFD containing 63 % of total fat in the form of mussel oil and only 28 % in the form of lard attenuated HFD-induced body weight gain after 1 and 4 weeks, respectively. Consistently, changing a lard-enriched HFD to the mussel oil diet reduced body weight markedly even after mice had been exposed to the former diet for 10 months. The weight-reducing effect of the diet was not caused by altered energy intake or expenditure, but was associated with reduced visceral fat mass. Collectively, these data suggest a novel weight-reducing potential of green-lipped mussel oil.


Assuntos
Bivalves , Dieta Hiperlipídica , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Metabolismo , Redução de Peso , Animais , Água Corporal/metabolismo , Peso Corporal , Calorimetria Indireta , Dióxido de Carbono/metabolismo , Gorduras na Dieta , Ingestão de Alimentos , Ingestão de Energia , Metabolismo Energético , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Consumo de Oxigênio
2.
FASEB J ; 34(3): 4635-4652, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32030816

RESUMO

The importance of fatty acids (FAs) for healthy brain development and function has become more evident in the past decades. However, most studies focus on the hypothalamus as an important FA-sensing brain region involved in energy homeostasis. Less work has been done to evaluate the effects of FAs on brain regions such as the hippocampus or cortex, two important centres of learning, memory formation, and cognition. Furthermore, the mechanisms of how FAs modulate the neuronal development and function are incompletely understood. Therefore, this study examined the effects of the saturated FA palmitic acid (PA) and the polyunsaturated FA docosahexaenoic acid (DHA) on primary hippocampal and cortical cultures isolated from P0/P1 Sprague Dawley rat pups. Exposure to PA, but not DHA, resulted in severe morphological changes in primary neurons such as cell body swelling, axonal and dendritic blebbing, and a reduction in synaptic innervation, compromising healthy cell function and excitability. Pharmacological assessment revealed that the PA-mediated alterations were caused by overactivation of neuronal insulin signaling, demonstrated by insulin stimulation and phosphoinositide 3-kinase inhibition. Remarkably, co-exposure to DHA prevented all PA-induced morphological changes. This work provides new insights into how FAs can affect the cytoskeletal rearrangements and neuronal function via modulation of insulin signaling.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Palmitatos/toxicidade , Animais , Células Cultivadas , Feminino , Hipotálamo/citologia , Imuno-Histoquímica , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Ratos , Ratos Sprague-Dawley , Sinapsinas/metabolismo , Tubulina (Proteína)/metabolismo
3.
Trends Endocrinol Metab ; 30(2): 132-143, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30594436

RESUMO

Metabolic syndrome and Alzheimer's disease (AD) are two major health issues in modern society causing an extraordinary financial burden for the global healthcare systems. A tight link between the pathologies of obesity and type 2 diabetes (T2D), and more recently between T2D and AD, has been discovered. Furthermore, in recent years it has become apparent that the circadian clock has an important function in controlling metabolism. This review integrates the role of the circadian clock in the development of these metabolic derangements and vice versa. Common features such as central insulin resistance, altered glycogen synthase kinase 3ß (GSK3ß) signalling, and central inflammation are discussed, and therapeutic interventions targeting those mechanisms are mentioned briefly.


Assuntos
Doença de Alzheimer/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiologia , Humanos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...