Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 87(6): 587-94, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22309710

RESUMO

Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.


Assuntos
Fracionamento Químico/métodos , Cromatos/química , Poluentes do Solo/química , Solo/química , Cromatos/análise , Substâncias Húmicas , Poluentes do Solo/análise
2.
Environ Pollut ; 156(3): 739-44, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18644665

RESUMO

Spatial distribution of arsenic (As) concentrations of irrigation water, soil and plant (rice) in a shallow tube-well (STW) command area (8 ha), and their relationship with Fe, Mn and P were studied. Arsenic concentrations of water in the 110 m long irrigation channel clearly decreased with distance from the STW point, the range being 68-136 microg L(-1). Such decreasing trend was also noticed with Fe and P concentrations, but the trend for Mn concentrations was not remarkable. Concerning soil As, the concentration showed a decreasing tendency with distance from the pump. The NH(4)-oxalate extractable As contributed 36% of total As and this amount of As was associated with poorly crystalline Fe-oxides. Furthermore only 22% of total As was phosphate extractable so that most of the As was tightly retained by soil constituents and was not readily exchangeable by phosphate. Soil As (both total and extractable As) was significantly and positively correlated with rice grain As (0.296+/-0.063 microg g(-1), n=56). Next to drinking water, rice could be a potential source of As exposure of the people living in the As affected areas of Bangladesh.


Assuntos
Agricultura , Arsênio/análise , Poluentes Ambientais/análise , Contaminação de Alimentos , Oryza/química , Bangladesh , Monitoramento Ambiental/métodos , Ferro/análise , Manganês/análise , Fósforo/análise , Solo/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 39(7): 2120-7, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15871246

RESUMO

In virtually all Earth surface environments, methylated forms of arsenic can be found. Because of the widespread distribution and toxicity of methyl-arsenic compounds, their adsorption by soil minerals is of considerable interest. The objective of this study was to compare the adsorption and desorption behavior of methylarsonic acid (MMAsV), methylarsonous acid (MMAsIII), dimethylarsinic acid (DMAsV), dimethylarsinous acid (DMAsIII), arsenate (iAsV), and arsenite (iAsIII) on iron oxide minerals (goethite and 2-line ferrihydrite) by means of adsorption isotherms, adsorption envelopes, and desorption envelopes (using sulfate and phosphate as desorbing ligands). MMAsIII and DMAsIII were not appreciably retained by goethite or ferrihydrite within the pH range of 3 to 11, while iAsIII was strongly adsorbed to both iron oxides. MMAsV and iAsV were adsorbed in higher amounts than DMAsV on goethite and ferrihydrite at all pH values studied. MMAsV and iAsV exhibited high adsorption affinities on both goethite and ferrihydrite from pH 3 to 10, while DMAsV was adsorbed only at pH values below 8 by ferrihydrite and below 7 by goethite. All arsenic compounds were desorbed more efficiently by phosphate than sulfate. MMAsV, iAsV, and DMAsV each exhibited adsorption characteristics suggesting specific adsorption on both goethite and ferrihydrite. Increased methyl substitution resulted in both decreased adsorbed arsenic at low arsenic concentrations in solution and increased ease of arsenic release from the iron oxide surface.


Assuntos
Arsenicais/química , Ferritinas/química , Compostos de Ferro/química , Adsorção , Boroidretos , Compostos Férricos , Concentração de Íons de Hidrogênio , Minerais , Fosfatos/química , Espectrofotometria Atômica , Sulfatos/química
4.
J Environ Qual ; 32(6): 2076-84, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14674529

RESUMO

Detoxification of Cr(VI) through reduction has been considered an effective method for reclaiming Cr-contaminated soil, sediment, and waste water. Organic matter is widely distributed in soil and aquatic systems; however, low Cr(VI) reduction rates inhibit the adoption of Cr reduction technologies by industry. Scientists have been aware of Cr(VI) reduction catalyzed by soil minerals; however, most of the studies focused on using semiconductors as catalysts with UV irradiation to accelerate the redox reactions. The objective of this study was to evaluate the rates of Cr(VI) reduction by fluorescence light in the presence of organic materials with or without specific soil minerals. Experimental results showed that dissolved organic compounds reduced Cr(VI) slowly under laboratory light; however, Cr(VI) reduction was greatly enhanced when growth chamber light was applied. Low photon flux (i.e., laboratory light) only enhanced Cr(VI) reduction by organics when Fe(III) was also present, because the Fe(II)-Fe(III) redox couple accelerated electron transfer and decreased electrostatic repulsion between reactants. Laboratory light was required to initiate Cr(VI) reduction catalyzed by TiO2; nonetheless, light-catalyzed Cr(VI) reduction by smectite and ferrihydrite could occur only when greater light energy was provided with a growth chamber light. Our results suggest a potential pathway for Cr(VI) reduction using naturally occurring organic compounds and colloids in acidic water systems or in surface soils when light is available.


Assuntos
Cromo/química , Ácido Edético/análogos & derivados , Luz , Minerais/química , Compostos Orgânicos/química , Poluentes do Solo , Solo , Catálise , Ácido Cítrico/química , Ácido Edético/química , Humanos , Oxalatos/química , Oxirredução
5.
Chemosphere ; 51(9): 993-1000, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12697190

RESUMO

The complexation of Fe(II) with organic ligand results in the decrease of redox potential, and enhances the reduction ability of Fe(II). An important example is the use of Fe(II)-organic complexes to accelerate Cr(VI) reduction. Dissolved O(2) and light can potentially affect Cr(VI) reduction; however, these two factors have not been adequately evaluated. A batch technique was used to investigate the Cr(VI) reduction as influenced by the light and dissolved O(2) using N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) and Fe(II) solutions. The oxidation of Fe(II) by dissolved O(2) was rapid in the presence of HEDTA at low pH; nonetheless, the oxidation proceeded slowly when HEDTA was absent. Although Cr(VI) could be reduced by free Fe(II) at low pH, the reaction was considerably slower than that of systems involving HEDTA. The enhancement of Cr(VI) reduction by Fe(II) in the presence of high concentrations of HEDTA was achieved as a result of two processes. First, HEDTA acted as a ligand for expediting electron transfer between Fe(II) and Cr(VI). Secondly, HEDTA served as a reductant for Cr(VI) under illumination.


Assuntos
Carcinógenos Ambientais/química , Quelantes/química , Cromo/química , Ácido Edético/análogos & derivados , Ácido Edético/química , Ferro/química , Concentração de Íons de Hidrogênio , Ligantes , Oxirredução , Fotoquímica , Purificação da Água
6.
Arch Environ Contam Toxicol ; 44(4): 445-53, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12712274

RESUMO

Understanding the chemical behavior and interactions of Cr(VI) ( e.g., HCrO(4)(-)) and other anions, such as orthophosphate (P) with insoluble metal hydroxides ( i.e., Cr[III] and Fe[III]) in disposal landfills or in chromite ore processing residue (CORP)-enriched soil is very important in predicting the movement and the fate of Cr(VI). This study evaluates the sorption behavior of P and Cr(VI) by Fe(III) ( i.e., ferrihydrite), Cr(III) ( i.e., Cr[OH](3)), and coprecipitated Fe(III)/Cr(III) hydroxides. These metal hydroxide sorbents were synthesized, and sorption of P and Cr(VI) were conducted at different pH using a batch technology. Our results show that P and Cr(VI) sorption by metal hydroxides decreased with increasing suspension pH. Greater decrease in P sorption was observed when Cr(III) was present in the structures of hydroxides. Following the sorption of low concentration of P ( i.e., 0.5 mM), the sorption of subsequently added Cr(VI) by hydroxides was less influenced. However, Cr(VI) sorption was greatly inhibited when high concentration of P ( i.e., 10 mM) prereacted with hydroxides, particularly in Fe(III) hydroxide system. Results also indicated that high concentration of Cr(VI) (10 mM) could dissolve Cr(III) hydroxide at pH 3 and reprecipitate as an amorphous form of Cr(VI) and Cr(III) compound at pH about 6.5. Although coprecipitation of Cr(VI) with Cr(III) can inhibit Cr(VI) movement through soil profiles, the inhibition seems to be low due to the gradual release of Cr(VI) with increasing pH.


Assuntos
Cromatos/química , Compostos de Cromo/química , Compostos Férricos/química , Fosfatos/química , Poluentes do Solo , Adsorção , Concentração de Íons de Hidrogênio , Eliminação de Resíduos/métodos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...