Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(9): 13270-13283, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243029

RESUMO

The seed germination, as well as root and shoot growth effect of HKUST-1 MOF, and its derived linear polymer ([Cu2(OH)(BTC)(H2O)]n·2nH2O) were herein examined. These effects were studied for seven higher plant species: sweet corn (Zea mays L.), black bean (Phaseolus vulgaris L.), tomato (Solanum lycopersicum L.), lettuce (Lactuca sativa L.), celosia (Celosia argentea L.), Aztec marigold (Tagetes erecta L.), and gypsophila (Gypsophila paniculata L.). The studied concentrations of MOFs were 10, 100, 500, or 1000 mg/L, enhancing the percentage of germination and growth of plants in most species. In general, the growth of the root is lower compared to the controls due to the capacity of the MOF to adsorb water and provide micronutrients such as C, O, and Cu, acting as a reserve for the plant. Shoot system growths are more pronounced with HKUST-1 compared with control, and linear polymer, due to the 3D structure adsorbs major water contents. It was found that all studied species are tolerant not only to Cu released from the material, but more evident to Cu structured in MOFs, and this occurs at high concentrations compared to many other systems. Finally, copper fixation was not present, studied by EDX mapping, banning the possibility of metallic phytotoxicity to the tested cultivars.


Assuntos
Germinação , Estruturas Metalorgânicas , Cobre/farmacologia , Sementes , Plantas , Lactuca , Água
2.
Pharmaceutics ; 15(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678928

RESUMO

Surface microbial colonization and its potential biofilm formation are currently a major unsolved problem, causing almost 75% of human infectious diseases. Pathogenic biofilms are capable of surviving high antibiotic doses, resulting in inefficient treatments and, subsequently, raised infection prevalence rates. Antibacterial coatings have become a promising strategy against the biofilm formation in biomedical devices due to their biocidal activity without compromising the bulk material. Here, we propose for the first time a silver-based metal-organic framework (MOF; here denoted AgBDC) showing original antifouling properties able to suppress not only the initial bacterial adhesion, but also the potential surface contamination. Firstly, the AgBDC stability (colloidal, structural and chemical) was confirmed under bacteria culture conditions by using agar diffusion and colony counting assays, evidencing its biocide effect against the challenging E. coli, one of the main representative indicators of Gram-negative resistance bacteria. Then, this material was shaped as homogeneous spin-coated AgBDC thin film, investigating its antifouling and biocide features using a combination of complementary procedures such as colony counting, optical density or confocal scanning microscopy, which allowed to visualize for the first time the biofilm impact generated by MOFs via a specific fluorochrome, calcofluor.

3.
Front Chem ; 10: 1065622, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36688033

RESUMO

Three silver-MOFs were prepared using an optimized, room-temperature methodology starting from AgNO3 and dicarboxylate ligands in water/ethanol yielding Ag 2 BDC, Ag 2 NDC (UAM-1), and Ag 2 TDC (UAM-2) at 38%-48% (BDC, benzenedicarboxylate; NDC, 1,8-naphthalene-dicarboxylate; TDC, p-terphenyl-4,4″-dicarboxylate). They were characterized by PXRD/FT-IR/TGA/photoluminescence spectroscopy, and the former two by SEM. These materials started decomposing at 330°C, while showing stability. The crystal structure of UAM-1 was determined by PXRD, DFT calculations, and Rietveld refinement. In general, the structure was 3D, with the largest Ag-O bond interlinking 2D layers. The FT-IR spectra revealed 1450 and 1680 bands (cm-1) of asymmetrically stretching aniso-/iso-bidentate -COO in coordination with 2/3-Ag atoms, accompanied by Ag-O bands at 780-740 cm-1, all demonstrating the network formation. XRD and SEM showed nanometric-scale crystals in Ag2BDC, and UAM-1 developed micrometric single-stranded/agglomerated fibrillar particles of varying nanometric widths. Luminescence spectroscopy showed emission by Ag2BDC, which was attributed to ligand-to-metal or ligand-to-metal-metal transitions, suggesting energy transfer due to the short distance between adjacent BDC molecules. UAM-1 and UAM-2 did not show luminescence emission attributable to ligand-to-metal transition; rather, they presented only UV emission. The stabilities of Ag2BDC and UAM-1 were evaluated in PBS/DMEM/DMEM+FBS media by XRD, which showed that they lost their crystallinity, resulting in AgCl due to soft-soft (Pearson's principle) affinity.

4.
ACS Omega ; 4(3): 5275-5282, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459699

RESUMO

Synthesis of a new HKUST-1 composite based on single-walled carbon nanotubes (SWCNTs) was successfully achieved (SWCNT@HKUST-1). SWCNTs were used as templates to grow rod-like HKUST-1 crystals over the surface of the nanotubes. N2 adsorption properties showed an increment on the surface area and pore volume for the SWCNT@HKUST-1 composite. Furthermore, the CO2 capture increased, from 7.92 to 8.75 mmol g-1 at 196 K up to 100 kPa, for the SWCNT@HKUST-1 composite. This enhancement was directly associated with the increase of the surface area of the composite. Additionally, an increase in the CO2 heat of adsorption was estimated, from 30 to 39.1 kJ mol-1 for the SWCNT@HKUST-1 composite. In situ Raman experiments corroborated the favored CO2 adsorption for the composite and provided an insight into the augmented hydrophobicity of the SWCNT@HKUST-1. Ethanol adsorption isotherms corroborated an increase in the hydrophobicity of the material upon the incorporation of carbon nanotubes.

5.
Chemistry ; 25(17): 4398-4411, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30609159

RESUMO

The metal-organic framework (MOF) HKUST-1 was employed as an interaction matrix for fundamental loading studies of anthraquinone dyes. Chosen dyes were alizarin (A), alizarin S (AS), disperse blue 1 (B1), disperse blue 3 (B3), disperse blue 56 (B56) and purpurin (P). All materials were characterized by XRD, FTIR, TGA and SEM. Hence the interaction of dyes with the framework was characterized by theoretical-experimental differential analysis. One-pot loading strategy resulted in more efficient scavenging of dyes, and reached 100 % for B56 using 50 mg L-1 . SEM revealed important microstructural changes, the smaller crystals ranged 0.8-3 µm in size and almost all composite sizes were from this to higher values, reaching 70 µm, with varying shapes. Two composites were larger in size range (about 2500-1000 µm), and were shaped as rods, octahedrons and coffin lids. Indeed, the microstructure could be modulated depending on preparation conditions and type of loaded dye. For the higher loading series, N2 adsorption and XPS experiments were carried on to further evidence dye-MOF interactions. Ab initio prediction of structural properties for A@HKUST-1 and P@HKUST-1 were obtained by means of solid-state CRYSTAL14 code at the PBE0 level of theory. Computed findings evidenced two O→Cu coordinative bonds, one from O-ketone and the other from O-phenolate moiety as main interactions towards CuNET centers.

6.
J Am Chem Soc ; 132(27): 9488-98, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20568760

RESUMO

A comparison of the adsorption of water, methanol, and ethanol polar vapors by the flexible porous chromium(III) terephthalate MIL-53(Cr) was investigated by complementary techniques including adsorption gravimetry, ex situ X-ray powder diffraction, microcalorimetry, thermal analysis, IR spectroscopy, and molecular modeling. The breathing steps observed during adsorption strongly depend on the nature of the vapor. With water, a significant contraction of the framework is observed. For the alcohols, the initial contraction is followed by an expansion of the framework. A combination of IR analysis, X-ray diffraction, and computer modeling leads to the molecular localization of the guest molecules and to the identification of the specific guest-guest and host-guest interactions. The enthalpies of adsorption, measured by microcalorimetry, show that the strength of the interactions decreases from ethanol to water. Differential scanning calorimetry experiments on an EtOH/H(2)O mixture suggest a selective adsorption of ethanol over water.

7.
J Am Chem Soc ; 130(50): 16926-32, 2008 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-19053405

RESUMO

A general study of the adsorption of n-alkanes in the flexible metal organic framework (MOF) MIL-53 is presented. The roles of the length of the alkyl chain (n = 1-9), the nature of the metal (Al, Cr), and temperature were investigated. The shape of the adsorption curves is driven by the alkyl chain length of the n-alkanes. While traditional type-I isotherms are observed for short alkanes (n = 1, 2), adsorbates with longer chains induce clear substeps in the isotherm curves whose positions depend on the chain length. Such substeps are due to a breathing phenomenon, as proven by ex situ X-ray diffraction analysis. They strongly depend on the amount of adsorbate in the pores and on the nature of the metal (Al, Cr), which, for a given alkane, leads to a strong change in the substep positions despite the similar characteristics of the two metals. The adsorption kinetics are highly sensitive to small variations in temperature. Their detailed analysis in different regions of the isotherms shows in some cases the existence of distinct diffusion regimes and/or conformations within the flexible phases.

8.
J Am Chem Soc ; 130(38): 12808-14, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18729451

RESUMO

The adsorption of C1 to C4 linear hydrocarbons in the flexible metal organic framework MIL-53(Cr) has been followed by adsorption manometry coupled with microcalorimetry and Synchrotron X-ray powder diffraction. This experimental investigation was completed by molecular modeling. In the case of methane, the solid remains rigid whatever the adsorbate amount. However for the C2-C4 series, an increasing flexibility of the structure is observed, which is ascribed first to a breathing of the material from a large pore to a narrow pore form followed by a further expansion at high pressure. The collected thermodynamic and structural information suggests that a minimum adsorption enthalpy of ca. 20 kJ mol (-1) in the initial large pore structure of MIL-53(Cr) is required to induce the structural transition "large to narrow pore". Further, the enthalpy of adsorption can be used to predict the pressure at which the structure reopens. Finally, the magnitude of the breathing can be related to the size of the probe molecule via the van der Waals volume. The above trends have been successfully verified in the case of water and carbon dioxide. This combined experimental and theoretical approach gives the first elements for the prediction of whether or not the MIL53 and similar flexible structures will respond to gas loading and what would be the pressure required and further the amplitude of the induced breathing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...