Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(12): 1533, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008869

RESUMO

Characterising spatial patterns in water temperature is important for monitoring aquatic habitats and understanding physical and biogeochemical processes to support environmental management decisions. As freshwater bodies exhibit high spatial and temporal variability, high-resolution 3D temperature data are essential to understand local anomalies. The acquisition of simultaneously high spatial and temporal datasets in the field has so far been limited by costs and/or workload associated with commonly used monitoring systems.We present a new, low-cost, spatially and temporally flexible 3D water temperature monitoring system, Surface Measures to Depth (SMeTD). SMeTD can be used to provide information on the relation of water surface temperature to changes with depth, characterise water temperature in 3D and ground truth remotely sensed thermal infrared data. The systems performance was tested under laboratory conditions and under controlled conditions in the field. This revealed an accuracy comparable to established but more expensive monitoring systems. Field testing of SMeTD involved 1-min data collection of 3D water temperature for a full diurnal cycle in a lake. The 3D temperature patterns were supported by a thermal infrared image of the lakes surface. The field dataset demonstrated higher water temperatures and higher water temperature variation at the surface compared to deeper layers. SMeTD can be used to observe a broad range of hydrological processes in natural and artificial aquatic environments and help to understand processes involved with energy budgets, infiltration, limnology, or groundwater surface water exchange.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Monitoramento Ambiental/métodos , Temperatura , Água/análise , Hidrologia
2.
Sci Total Environ ; 890: 164194, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37201803

RESUMO

Stream temperature is directly and indirectly affected by climate change. To be able to project future changes in stream temperature, historic trends and factors influencing these trends need to be understood. There is a demand for daily data to analyse historical trends and future changes in stream temperature. However, long-term daily stream temperature data are rare and observations of coarse temporal resolution (e.g. once-a-month) do not allow for robust trend analyses. Here, we present a methodology to reconstruct a national long-term daily stream temperature record (1960-2080) from 40 years of once-a-month observations (for 45 Scottish catchments). This involved implementing climatic and hydrological variables in generalized additive models. These models were then used in combination with regional climate projections (UKCP18 Strand 3 - RCP8.5) to predict future spatio-temporal temperature patterns. The results indicate that for the Scottish dataset (i) in addition to air temperature, the dominant environmental controls on stream temperature are unique combinations for each catchment; (ii) a general increase of up to 0.06 °C/year in historic stream temperature over all catchments resulted mainly from increases in spring and summer stream temperatures; (iii) future spatial patterns in stream temperature are more homogenous and differ therefore from the past where temperatures in N Scotland were relatively lower; (iv) future changes of up to +4.0 °C in annual stream temperature are strongest in those catchments which show lower stream temperature in the past (NW and W Scotland). These results are important in the context of water quality and stream temperature management. The methodology can be applied to smaller scale sites or to other national/global datasets enabling the analysis of historic trends and future changes at a high temporal resolution.


Assuntos
Rios , Qualidade da Água , Temperatura , Escócia , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA