Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672483

RESUMO

The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions. We found that myelin basic protein (MBP) cleaves L1's extracellular domain, leading to enhanced neuritogenesis and neuronal survival in vitro. To investigate in vivo the importance of the MBP-generated 70 kDa fragment (L1-70), we generated mice with an arginine to alanine substitution at position 687 (L1/687), thereby disrupting L1's MBP cleavage site and obliterating L1-70. Young adult L1/687 males showed normal anxiety and circadian rhythm activities but enhanced locomotion, while females showed altered social interactions. Older L1/687 males were impaired in motor coordination. Furthermore, L1/687 male and female mice had a larger hippocampus, with more neurons in the dentate gyrus and more proliferating cells in the subgranular layer, while the thickness of the corpus callosum and the size of lateral ventricles were normal. In summary, subtle mutant morphological changes result in subtle behavioral changes.


Assuntos
Encéfalo , Molécula L1 de Adesão de Célula Nervosa , Animais , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Camundongos , Masculino , Feminino , Encéfalo/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Mutação , Comportamento Animal , Domínios Proteicos , Neurônios/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL
2.
Front Behav Neurosci ; 17: 1288509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025382

RESUMO

Introduction: The dopaminergic system plays a key role in the appropriate functioning of the central nervous system, where it is essential for emotional balance, arousal, reward, and motor control. The cell adhesion molecule close homolog of L1 (CHL1) contributes to dopaminergic system development, and CHL1 and the dopamine receptor D2 (D2R) are associated with mental disorders like schizophrenia, addiction, autism spectrum disorder and depression. Methods: Here, we investigated how the interplay between CHL1 and D2R affects the behavior of young adult male and female wild-type (CHL+/+) and CHL1-deficient (CHL1-/-) mice, when D2R agonist quinpirole and antagonist sulpiride are applied. Results: Low doses of quinpirole (0.02 mg/kg body weight) induced hypolocomotion of CHL1+/+ and CHL1-/- males and females, but led to a delayed response in CHL1-/- mice. Sulpiride (1 mg/kg body weight) affected locomotion of CHL1-/- females and social interaction of CHL1+/+ females as well as social interactions of CHL1-/- and CHL1+/+ males. Quinpirole increased novelty-seeking behavior of CHL1-/- males compared to CHL1+/+ males. Vehicle-treated CHL1-/- males and females showed enhanced working memory and reduced stress-related behavior. Discussion: We propose that CHL1 regulates D2R-dependent functions in vivo. Deficiency of CHL1 leads to abnormal locomotor activity and emotionality, and to sex-dependent behavioral differences.

3.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569906

RESUMO

The neural cell adhesion molecule L1 (also called L1CAM or CD171) functions not only in cell migration, but also in cell survival, differentiation, myelination, neurite outgrowth, and signaling during nervous system development and in adults. The proteolytic cleavage of L1 in its extracellular domain generates soluble fragments which are shed into the extracellular space and transmembrane fragments that are internalized into the cell and transported to various organelles to regulate cellular functions. To identify novel intracellular interaction partners of L1, we searched for protein-protein interaction motifs and found two potential microtubule-associated protein 1 light-chain 3 (LC3)-interacting region (LIR) motifs within L1, one in its extracellular domain and one in its intracellular domain. By ELISA, immunoprecipitation, and proximity ligation assay using L1 mutant mice lacking the 70 kDa L1 fragment (L1-70), we showed that L1-70 interacts with LC3 via the extracellular LIR motif in the fourth fibronectin type III domain, but not by the motif in the intracellular domain. The disruption of the L1-LC3 interaction reduces L1-mediated neurite outgrowth and neuronal survival.

4.
Biomolecules ; 13(5)2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37238646

RESUMO

Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities. Furthermore, mutations in the extracellular domain were shown to cause a severe phenotype more often than mutations in the intracellular domain. To explore the outcome of a mutation in the extracellular domain, we generated mice with disruption of the dibasic sequences RK and KR that localize to position 858RKHSKR863 in the third fibronectin type III domain of murine L1. These mice exhibit alterations in exploratory behavior and enhanced marble burying activity. Mutant mice display higher numbers of caspase 3-positive neurons, a reduced number of principle neurons in the hippocampus, and an enhanced number of glial cells. Experiments suggest that disruption of the dibasic sequence in L1 results in subtle impairments in brain structure and functions leading to obsessive-like behavior in males and reduced anxiety in females.


Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Animais , Feminino , Masculino , Camundongos , Fibronectinas/genética , Fibronectinas/metabolismo , Gliose/metabolismo , Hipocampo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768419

RESUMO

The cell adhesion molecule L1 is essential not only for neural development, but also for synaptic functions and regeneration after trauma in adulthood. Abnormalities in L1 functions cause developmental and degenerative disorders. L1's functions critically depend on proteolysis which underlies dynamic cell interactions and signal transduction. We showed that a 70 kDa fragment (L1-70) supports mitochondrial functions and gene transcription. To gain further insights into L1-70's functions, we investigated several binding partners. Here we show that L1-70 interacts with topoisomerase 1 (TOP1), peroxisome proliferator-activated receptor γ (PPARγ) and NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDUFV2). TOP1, PPARγ and NDUFV2 siRNAs reduced L1-dependent neurite outgrowth, and the topoisomerase inhibitors topotecan and irinotecan inhibited L1-dependent neurite outgrowth, neuronal survival and migration. In cultured neurons, L1 siRNA reduces the expression levels of the long autism genes neurexin-1 (Nrxn1) and neuroligin-1 (Nlgn1) and of the mitochondrially encoded gene NADH:ubiquinone oxidoreductase core subunit 2 (ND2). In mutant mice lacking L1-70, Nrxn1 and Nlgn1, but not ND2, mRNA levels are reduced. Since L1-70's interactions with TOP1, PPARγ and NDUFV2 contribute to the expression of two essential long autism genes and regulate important neuronal functions, we propose that L1 may not only ameliorate neurological problems, but also psychiatric dysfunctions.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Animais , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Flavoproteínas/metabolismo , Expressão Gênica , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Ubiquinona/metabolismo , DNA Topoisomerases Tipo I/metabolismo
6.
FASEB J ; 37(3): e22823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809668

RESUMO

The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.


Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Fibronectinas/fisiologia , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Anticorpos Monoclonais , Adesão Celular/fisiologia , Neuritos
7.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674445

RESUMO

Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.


Assuntos
Proteínas Mitocondriais , Molécula L1 de Adesão de Célula Nervosa , Citoplasma/metabolismo , Citosol/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurônios/metabolismo , Humanos , Camundongos , Animais
8.
Front Aging Neurosci ; 14: 1075161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533180

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of central nervous system (CNS). Aging is the most significant risk factor for the progression of MS. Dietary modulation (such as ketogenic diet) and caloric restriction, can increase ketone bodies, especially ß-hydroxybutyrate (BHB). Increased BHB has been reported to prevent or improve age-related disease. The present studies were performed to understand the therapeutic effect and potential mechanisms of exogenous BHB in cuprizone (CPZ)-induced demyelinating model. In this study, a continuous 35 days CPZ mouse model with or without BHB was established. The changes of behavior function, pathological hallmarks of CPZ, and intracellular signal pathways in mice were detected by Open feld test, Morris water maze, RT-PCR, immuno-histochemistry, and western blot. The results showed that BHB treatment improved behavioral performance, prevented myelin loss, decreased the activation of astrocyte as well as microglia, and up-regulated the neurotrophin brain-derived neurotrophic factor in both the corpus callosum and hippocampus. Meanwhile, BHB treatment increased the number of MCT1+ cells and APC+ oligodendrocytes. Furthermore, the treatment decreased the expression of HDAC3, PARP1, AIF and TRPA1 which is related to oligodendrocyte (OL) apoptosis in the corpus callosum, accompanied by increased expression of TrkB. This leads to an increased density of doublecortin (DCX)+ neuronal precursor cells and mature NeuN+ neuronal cells in the hippocampus. As a result, BHB treatment effectively promotes the generation of PDGF-Ra+ (oligodendrocyte precursor cells, OPCs), Sox2+ cells and GFAP+ (astrocytes), and decreased the production of GFAP+ TRAP1+ cells, and Oligo2+ TRAP1+ cells in the corpus callosum of mouse brain. Thus, our results demonstrate that BHB treatment efficiently supports OPC differentiation and decreases the OLs apoptosis in CPZ-intoxicated mice, partly by down-regulating the expression of TRPA1 and PARP, which is associated with the inhibition of the p38-MAPK/JNK/JUN pathway and the activation of ERK1/2, PI3K/AKT/mTOR signaling, supporting BHB treatment adjunctive nutritional therapy for the treatment of chronic demyelinating diseases, such as multiple sclerosis (MS).

9.
ACS Chem Neurosci ; 13(17): 2579-2598, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35947794

RESUMO

Suppression of excessive microglial overactivation can prevent the progression of multiple sclerosis (MS). Histone deacetylases 3 inhibitor (HDAC3i) has been demonstrated to exert anti-inflammatory effects by suppressing microglia (M1-liked) activation. Here, we demonstrate that the RGFP966 (a selective inhibitor of HDAC3) protects white matter after cuprizone-induced demyelination, as shown by reductions in neurological behavioral deficits and increases in myelin basic protein. Moreover, in this study, we found that RGFP966 caused a significant reduction in the levels of inflammatory cytokines, including IL-1ß, TNF-α, as well as iNOS, and inhibited microglial (M1-liked) activation in the experimental cuprizone model and LPS-stimulated BV2 cells. Meanwhile, RGFP966 alleviated apoptosis of LPS-induced BV2 cells in vitro. Furthermore, RGFP966 suppressed the expression of P2X7R, NLRP3, ASC, IL-18, IL-1ß, and caspase-1, inhibited the ratio of phosphorylated-STAT3/STAT3 and phosphorylated NF-κB p65/NF-κB p65, as well as increased acetylated NF-κB p65 in vitro and in vivo. Furthermore, we confirmed that brilliant blue G (antagonists of P2X7R) suppressed the expression of microglial NLRP3, IL-18, IL-1ß, caspase-1, NF-κB p65 (including phosphorylated NF-κB p65), and STAT3 (including phosphorylated STAT3) in vitro. These findings demonstrated that RFFP966 alleviated the inflammatory response and exerted a neuroprotective effect possibly by modulating P2X7R/STAT3/NF-κB65/NLRP3 signaling pathways. Thus, HDAD3 might be considered a promising intervention target for neurodegenerative diseases, such as MS.


Assuntos
Cuprizona , Inibidores Enzimáticos/farmacologia , Histona Desacetilases/metabolismo , NF-kappa B , Acrilamidas , Animais , Caspase 1/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Modelos Animais de Doenças , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos , Microglia , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Fenilenodiaminas
10.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457156

RESUMO

Adhesion molecules regulate cell proliferation, migration, survival, neuritogenesis, synapse formation and synaptic plasticity during the nervous system's development and in the adult. Among such molecules, the neural cell adhesion molecule L1 contributes to these functions during development, and in synapse formation, synaptic plasticity and regeneration after trauma. Proteolytic cleavage of L1 by different proteases is essential for these functions. A proteolytic fragment of 70 kDa (abbreviated L1-70) comprising part of the extracellular domain and the transmembrane and intracellular domains was shown to interact with mitochondrial proteins and is suggested to be involved in mitochondrial functions. To further determine the role of L1-70 in mitochondria, we generated two lines of gene-edited mice expressing full-length L1, but no or only low levels of L1-70. We showed that in the absence of L1-70, mitochondria in cultured cerebellar neurons move more retrogradely and exhibit reduced mitochondrial membrane potential, impaired Complex I activity and lower ATP levels compared to wild-type littermates. Neither neuronal migration, neuronal survival nor neuritogenesis in these mutants were stimulated with a function-triggering L1 antibody or with small agonistic L1 mimetics. These results suggest that L1-70 is important for mitochondrial homeostasis and that its absence contributes to the L1 syndrome phenotypes.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Paraplegia Espástica Hereditária , Animais , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Paraplegia Espástica Hereditária/metabolismo
11.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408913

RESUMO

Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, ß-site of amyloid precursor protein cleaving enzyme (BACE1) and É£-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.


Assuntos
Molécula L1 de Adesão de Célula Nervosa , Secretases da Proteína Precursora do Amiloide , Animais , Ácido Aspártico Endopeptidases , Células HEK293 , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Molécula L1 de Adesão de Célula Nervosa/metabolismo , RNA Interferente Pequeno/genética
12.
FASEB Bioadv ; 4(1): 43-59, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35024572

RESUMO

Close homolog of L1 (CHL1) is a cell adhesion molecule of the immunoglobulin superfamily. It promotes neuritogenesis and survival of neurons in vitro. In vivo, CHL1 promotes nervous system development, regeneration after trauma, and synaptic function and plasticity. We identified programmed cell death 6 (PDCD6) as a novel binding partner of the CHL1 intracellular domain (CHL1-ICD). Co-immunoprecipitation, pull-down assay with CHL1-ICD, and proximity ligation in cerebellum and pons of 3-day-old and 6-month-old mice, as well as in cultured cerebellar granule neurons and cortical astrocytes indicate an association between PDCD6 and CHL1. The Ca2+-chelator BAPTA-AM inhibited the association between CHL1 and PDCD6. The treatment of cerebellar granule neurons with a cell-penetrating peptide comprising the cell surface proximal 30 N-terminal amino acids of CHL1-ICD inhibited the association between CHL1 and PDCD6 and PDCD6- and CHL1-triggered neuronal survival. These results suggest that PDCD6 contributes to CHL1 functions in the nervous system.

13.
FASEB J ; 36(1): e22074, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859928

RESUMO

Cell adhesion molecule L1 regulates multiple cell functions and L1 deficiency is linked to several neural diseases. Proteolytic processing generates functionally decisive L1 fragments, which are imported into the nucleus. By computational analysis, we found at L1's C-terminal end the chromo shadow domain-binding motif PxVxL, which directs the binding of nuclear proteins to the heterochromatin protein 1 (HP1) isoforms α, ß, and É£. By enzyme-linked immunosorbent assay, we show that the intracellular L1 domain binds to all HP1 isoforms. These interactions involve the HP1 chromo shadow domain and are mediated via the sequence 1158 KDET1161 in the intracellular domain of murine L1, but not by L1's C-terminal PxVxL motif. Immunoprecipitation using nuclear extracts from the brain and from cultured cerebellar and cortical neurons indicates that HP1 isoforms interact with a yet unknown nuclear L1 fragment of approximately 55 kDa (L1-55), which carries ubiquitin residues. Proximity ligation indicates a close association between L1-55 and the HP1 isoforms in neuronal nuclei. This association is reduced after the treatment of neurons with inhibitors of metalloproteases, ß-site of amyloid precursor protein cleaving enzyme (BACE1), or É£-secretase, suggesting that cleavage of full-length L1 by these proteases generates L1-55. Reduction of HP1α, -ß, or -É£ expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons and decreases the L1-dependent migration of L1-transfected HEK293 cells in a scratch assay. These findings indicate that the interaction of the novel fragment L1-55 with HP1 isoforms in nuclei affects L1-dependent functions, such as neurite outgrowth and neuronal migration.


Assuntos
Movimento Celular , Homólogo 5 da Proteína Cromobox/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Motivos de Aminoácidos , Animais , Homólogo 5 da Proteína Cromobox/genética , Feminino , Masculino , Camundongos , Camundongos Mutantes , Molécula L1 de Adesão de Célula Nervosa/genética , Domínios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360882

RESUMO

The human natural killer (HNK-1) carbohydrate plays important roles during nervous system development, regeneration after trauma and synaptic plasticity. Four proteins have been identified as receptors for HNK-1: the laminin adhesion molecule, high-mobility group box 1 and 2 (also called amphoterin) and cadherin 2 (also called N-cadherin). Because of HNK-1's importance, we asked whether additional receptors for HNK-1 exist and whether the four identified proteins share any similarity in their primary structures. A set of 40,000 sequences homologous to the known HNK-1 receptors was selected and used for large-scale sequence alignments and motif searches. Although there are conserved regions and highly conserved sites within each of these protein families, there was no sequence similarity or conserved sequence motifs found to be shared by all families. Since HNK-1 receptors have not been compared regarding binding constants and since it is not known whether the sulfated or non-sulfated part of HKN-1 represents the structurally crucial ligand, the receptors are more heterogeneous in primary structure than anticipated, possibly involving different receptor or ligand regions. We thus conclude that the primary protein structure may not be the sole determinant for a bona fide HNK-1 receptor, rendering receptor structure more complex than originally assumed.


Assuntos
Antígenos CD57/metabolismo , Caderinas/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Laminina/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Antígenos CD57/química , Caderinas/química , Proteína HMGB1/química , Proteína HMGB2/química , Humanos , Laminina/química , Ligantes , Regeneração Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Oligossacarídeos/química , Ligação Proteica , Domínios Proteicos
15.
FASEB J ; 35(2): e21329, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484186

RESUMO

L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/tratamento farmacológico , Deficiência Intelectual/tratamento farmacológico , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Peptidomiméticos/uso terapêutico , Paraplegia Espástica Hereditária/tratamento farmacológico , Animais , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/patologia , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Molécula L1 de Adesão de Célula Nervosa/genética , Neurogênese , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptidomiméticos/farmacologia , Fenótipo , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/patologia , Toluidinas/farmacologia , Toluidinas/uso terapêutico , Trimebutina/farmacologia , Trimebutina/uso terapêutico
16.
J Neurochem ; 157(4): 1102-1117, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32986867

RESUMO

The important functions of cell adhesion molecule L1 in the nervous system depend on diverse proteolytic enzymes which generate different L1 fragments. It has been reported that cleavage in the third fibronectin type III (FNIII) homologous domain generates the fragments L1-80 and L1-140, while cleavage in the first FNIII domain yields the fragments L1-70 and L1-135. These results raised questions concerning the L1 cleavage sites. We thus generated gene-edited mice expressing L1 with mutations of the cleavage sites either in the first or third FNIII domain. By immunoprecipitations and immunoblot analyses using brain homogenates and different L1 antibodies, we show that L1-70 and L1-135 are generated in wild-type mice, but not or only to a low extent in L1 mutant mice. L1-80 and L1-140 were not detected in wild-type or mutant mice. Mass spectrometry confirmed the results from immunoprecipitations and immunoblot analyses. Based on these observations, we propose that L1-70 and L1-135 are the predominant fragments in the mouse nervous system and that the third FNIII domain is decisive for generating these fragments. Treatment of cultured cerebellar neurons with trypsin or plasmin, which were both proposed to generate L1-80 and L1-140 by cleaving in the third FNIII domain, showed by immunoprecipitations and immunoblot analyses that both proteases lead to the generation of L1-70 and L1-135, but not L1-80 and L1-140. We discuss previous observations on the basis of our new results and propose a novel view on the molecular features that render previous and present observations compatible.


Assuntos
Encéfalo/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Proteólise , Animais , Camundongos , Camundongos Mutantes
17.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987628

RESUMO

Because of the importance of the HNK-1 carbohydrate for preferential motor reinnervation after injury of the femoral nerve in mammals, we screened NIH Clinical Collection 1 and 2 Libraries and a Natural Product library comprising small organic compounds for identification of pharmacologically useful reagents. The reason for this attempt was to obviate the difficult chemical synthesis of the HNK-1 carbohydrate and its isolation from natural sources, with the hope to render such compounds clinically useful. We identified six compounds that enhanced neurite outgrowth from cultured spinal motor neurons at nM concentrations and increased their neurite diameter, but not their neurite branch points. Axons of dorsal root ganglion neurons did not respond to these compounds, a feature that is in agreement with their biological role after injury. We refer to the positive functions of some of these compounds in animal models of injury and delineate the intracellular signaling responses elicited by application of compounds to cultured murine central nervous system neurons. Altogether, these results point to the potential of the HNK-1 carbohydrate mimetics in clinically-oriented settings.


Assuntos
Antígenos CD57/análogos & derivados , Gânglios Espinais/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Compostos Orgânicos/farmacologia , Animais , Células Cultivadas , Embrião de Mamíferos , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Neurônios Motores/citologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico
18.
J Agric Food Chem ; 68(40): 11215-11228, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32921051

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Recently, ketogenic diet (KD) supplementation has attracted great interest. Therefore, we established the cuprizone (CPZ)-induced demyelination mouse model to investigate the possible neuroprotective effect of KD on the hippocampus of mice. We found that KD significantly elevated the level of serum ß-hydroxybutyric acid, improved behavioral and motor abnormalities, and impaired the spatial learning and memory of CPZ-induced demyelination mice. Meanwhile, KD lessened the hippocampal demyelination by enhancing the expression of mature oligodendrocytes (OLs), which was revealed by the elevated expression of MBP and CNPase, as well as the luxol fast blue-staining intensity. Furthermore, KD inhibits the activation of microglia (especially M1-like microglia) and reactive astrocytes. Interestingly, KD attenuated the CPZ-induced oxidative stress by decreasing the malondialdehyde (MDA) content and restoring the glutathione (GSH) levels. In addition, the double immunofluorescence staining revealed that KD enhanced the expression of SIRT1 in astrocytes, microglia, and mature oligodendrocytes. Concomitantly, Western blot demonstrated that KD increased the expression of SIRT1, phosphorylated-AKT, mTOR, and PPAR-γ. In conclusion, KD exerted a neuroprotective effect on CPZ-induced demyelination mice, and this activity was associated with the modulation of the SIRT1/PPAR-γ and SIRT1/P-Akt/mTOR pathways.


Assuntos
Cuprizona/efeitos adversos , Dieta Cetogênica , Hipocampo/metabolismo , Esclerose Múltipla/dietoterapia , Animais , Astrócitos/metabolismo , Doenças Desmielinizantes , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
19.
Food Funct ; 11(6): 5647-5663, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32539054

RESUMO

Ketogenic diet (KD) is defined as a high-fat, low-carbohydrate diet with appropriate amounts of protein, which has broad neuroprotective effects. However, the mechanisms of ameliorating the demyelination and of the neuroprotective effects of KD have not yet been completely elucidated. Therefore, the present study investigated the protection mechanism of KD treatment in the cuprizone (bis-cyclohexanone oxalydihydrazone, CPZ)-induced demyelination mice model, with special emphasis on neuroinflammation. After the KD treatment, an increased ketone body level in the blood of mice was detected, and a significant increase in the distance traveled within the central area was observed in the open field test, which reflected the increased exploration and decreased anxiety of mice that received CPZ. The results of Luxol fast blue and myelin basic protein (MBP) immunohistochemistry staining for the evaluation of the myelin content within the corpus callosum revealed a noticeable increase in the number of myelinated fibers and myelin score after KD administration in these animals. Concomitant, the protein expressions of glial fibrillary acidic protein (GFAP, an astrocyte marker), ionized calcium-binding adaptor molecule 1 (Iba-1, a microglial marker), CD68 (an activated microglia marker) and CD16/32 (a M1 microglial marker) were down-regulated, while the expression of oligodendrocyte lineage transcription factor 2 (OLIG2, an oligodendrocyte precursor cells marker) was up-regulated by the KD treatment. In addition, the KD treatment not only reduced the level of the C-X-C motif chemokine 10 (CXCL10), which is correlated to the recruitment of activated microglia, but also inhibited the production of proinflammatory cytokines, including interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), which are closely correlated to the M1 phenotype microglia. It is noteworthy, that the expression levels of histone deacetylase 3 (HADC3) and nod-like receptor pyrin domain containing 3 (NLRP3) significantly decreased after KD administration. In conclusion, these data demonstrate that KD decreased the reactive astrocytes and activated the microglia in the corpus callosum, and that KD inhibited the HADC3 and NLRP3 inflammasome signaling pathway in CPZ-treated mice. This suggests that the inhibition of the HADC3 and NLRP3 signaling pathway may be a novel mechanism by which KD exerts its protective actions for the treatment of demyelinating diseases.


Assuntos
Cuprizona/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Dieta Cetogênica , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Astrócitos , Peso Corporal/efeitos dos fármacos , Encéfalo , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Proteína Glial Fibrilar Ácida/metabolismo , Histona Desacetilases , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Proteína Básica da Mielina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
20.
Nanoscale Adv ; 2(11): 5192-5200, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132017

RESUMO

Directed guidance of neurites is a pre-requisite for tailor-made designs of interfaces between cells and semiconducting components. Grayscale lithography, reactive ion etching, and ultraviolet nanoimprint lithography are potent semiconductor industry-compatible techniques for a cost- and time-effective fabrication of modulated surfaces. In this work, neurite outgrowth of murine cerebellar neurons on 2.5D pathways produced with these methods is studied. Structures of micron-sized steps and grooves serve as cell culture platforms. The effects of contact guidance through topography and chemical guidance through selective poly-d-lysine coating on these platforms are analyzed. As a consequence, the herein presented fabrication approach can be utilized to cultivate and to study low-density neuronal networks in 2.5D configuration with a high degree of order.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...