Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 81(2-3): 184-187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38158587

RESUMO

Both diastolic filling and systolic pumping of the heart are dependent on the passive stiffness characteristics of various mechanical elements of myocardium. However, the specific contribution from each element, including the extracellular matrix, actin filaments, microtubules, desmin intermediate filaments, and sarcomeric titin springs, remains challenging to assess. Recently, a mouse model allowing for precise and acute cleavage of the titin springs was used to remove one mechanical element after the other from cardiac fibers and record the effect on passive stiffness. It became clear that the stiffness contribution from each element is context-dependent and varies depending on strain level and the force component considered (elastic or viscous); elements do not act in isolation but in a tensegral relationship. Titin is a substantial contributor under all conditions and dominates the elastic forces at both low and high strains. The contribution to viscous forces is more equally shared between microtubules, titin, and actin. However, the extracellular matrix substantially contributes to both force components at higher strain levels. Desmin filaments may bear low stiffness. These insights enhance our understanding of how different filament networks contribute to passive stiffness in the heart and offer new perspectives for targeting this stiffness in heart failure treatment.


Assuntos
Proteínas Musculares , Miocárdio , Animais , Camundongos , Conectina , Desmina , Coração
2.
Cardiovasc Res ; 118(14): 2903-2918, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662387

RESUMO

The giant sarcomere protein titin is a major determinant of cardiomyocyte stiffness and contributor to cardiac strain sensing. Titin-based forces are highly regulated in health and disease, which aids in the regulation of myocardial function, including cardiac filling and output. Due to the enormous size, complexity, and malleability of the titin molecule, titin properties are also vulnerable to dysregulation, as observed in various cardiac disorders. This review provides an overview of how cardiac titin properties can be changed at a molecular level, including the role isoform diversity and post-translational modifications (acetylation, oxidation, and phosphorylation) play in regulating myocardial stiffness and contractility. We then consider how this regulation becomes unbalanced in heart disease, with an emphasis on changes in titin stiffness and protein quality control. In this context, new insights into the key pathomechanisms of human cardiomyopathy due to a truncation in the titin gene (TTN) are discussed. Along the way, we touch on the potential for titin to be therapeutically targeted to treat acquired or inherited cardiac conditions, such as HFpEF or TTN-truncation cardiomyopathy.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Humanos , Conectina/genética , Conectina/metabolismo , Volume Sistólico , Miócitos Cardíacos/metabolismo , Cardiomiopatias/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(39): 24545-24556, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32929035

RESUMO

The relationship between oxidative stress and cardiac stiffness is thought to involve modifications to the giant muscle protein titin, which in turn can determine the progression of heart disease. In vitro studies have shown that S-glutathionylation and disulfide bonding of titin fragments could alter the elastic properties of titin; however, whether and where titin becomes oxidized in vivo is less certain. Here we demonstrate, using multiple models of oxidative stress in conjunction with mechanical loading, that immunoglobulin domains preferentially from the distal titin spring region become oxidized in vivo through the mechanism of unfolded domain oxidation (UnDOx). Via oxidation type-specific modification of titin, UnDOx modulates human cardiomyocyte passive force bidirectionally. UnDOx also enhances titin phosphorylation and, importantly, promotes nonconstitutive folding and aggregation of unfolded domains. We propose a mechanism whereby UnDOx enables the controlled homotypic interactions within the distal titin spring to stabilize this segment and regulate myocardial passive stiffness.


Assuntos
Miocárdio/química , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteínas Quinases/metabolismo , Animais , Elasticidade , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/química , Oxirredução , Fosforilação , Proteínas Quinases/química , Proteínas Quinases/genética
4.
J Pharm Biomed Anal ; 98: 52-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880991

RESUMO

Chromatography techniques such as HPTLC and HPLC are commonly used to produce a chemical fingerprint of a plant to allow identification and quantify the main constituents within the plant. The aims of this study were to compare HPTLC and HPLC, for qualitative and quantitative analysis of the major constituents of Calendula officinalis and to investigate the effect of different extraction techniques on the C. officinalis extract composition from different parts of the plant. The results found HPTLC to be effective for qualitative analysis, however, HPLC was found to be more accurate for quantitative analysis. A combination of the two methods may be useful in a quality control setting as it would allow rapid qualitative analysis of herbal material while maintaining accurate quantification of extract composition.


Assuntos
Calendula/química , Extratos Vegetais/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Fina/métodos , Controle de Qualidade
5.
Anal Chim Acta ; 798: 103-8, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24070490

RESUMO

Calendula officinalis, commonly known Marigold, has been traditionally used for its anti-inflammatory effects. The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of chlorogenic acid, caffeic acid and rutin in Calendula plant extracts. By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. A hundred and one signal intensities in each of the HPTLC chromatograms were correlated to the amounts of applied chlorogenic acid, caffeic acid, and rutin using an ANN. The developed ANN correlation was used to quantify the amounts of 3 marker compounds in calendula plant extracts. The minimum quantifiable level (MQL) of 610, 190 and 940 ng and the limit of detection (LD) of 183, 57 and 282 ng were established for chlorogenic, caffeic acid and rutin, respectively. A novel method for quality control of herbal products, based on HPTLC separation, high resolution digital plate imaging and ANN data analysis has been developed. The proposed method can be adopted for routine evaluation of the phytochemical variability in calendula extracts.


Assuntos
Ácidos Cafeicos/análise , Calendula/metabolismo , Ácido Clorogênico/análise , Cromatografia em Camada Fina , Redes Neurais de Computação , Rutina/análise , Ácidos Cafeicos/normas , Calendula/química , Ácido Clorogênico/normas , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina/normas , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Controle de Qualidade , Rutina/normas
6.
Phytochem Anal ; 24(4): 303-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23172832

RESUMO

INTRODUCTION: Echinacea preparations are among the most popular herbal remedies worldwide. Although it is generally assigned immune enhancement activities, the effectiveness of Echinacea is highly dependent on the Echinacea species, part of the plant used, the age of the plant, its location and the method of extraction. OBJECTIVE: The aim of this study was to investigate the capacity of an artificial neural network (ANN) to analyse thin-layer chromatography (TLC) chromatograms as fingerprint patterns for quantitative estimation of three phenylpropanoid markers (chicoric acid, chlorogenic acid and echinacoside) in commercial Echinacea products. MATERIAL AND METHODS: By applying samples with different weight ratios of marker compounds to the system, a database of chromatograms was constructed. One hundred and one signal intensities in each of the TLC chromatograms were correlated to the amounts of applied echinacoside, chlorogenic acid and chicoric acid using an ANN. RESULTS: The developed ANN correlation was used to quantify the amounts of three marker compounds in Echinacea commercial formulations. The minimum quantifiable level of 63, 154 and 98 ng and the limit of detection of 19, 46 and 29 ng were established for echinacoside, chlorogenic acid and chicoric acid respectively. CONCLUSION: A novel method for quality control of herbal products, based on TLC separation, high-resolution digital plate imaging and ANN data analysis has been developed. The method proposed can be adopted for routine evaluation of the phytochemical variability in Echinacea formulations available in the market.


Assuntos
Cromatografia em Camada Fina/métodos , Densitometria/métodos , Echinacea/química , Redes Neurais de Computação , Fenilpropionatos/análise , Preparações de Plantas/normas , Ácidos Cafeicos/análise , Ácido Clorogênico/análise , Glicosídeos/análise , Processamento de Imagem Assistida por Computador/métodos , Limite de Detecção , Fenilpropionatos/química , Controle de Qualidade , Succinatos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...