Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598488

RESUMO

Although the genetic code of the yeast Saccharomyces cerevisiae was sequenced 25 years ago, the characterization of the roles of genes within it is far from complete. The lack of a complete mapping of functions to genes hampers systematic understanding of the biology of the cell. The advent of high-throughput metabolomics offers a unique approach to uncovering gene function with an attractive combination of cost, robustness, and breadth of applicability. Here, we used flow-injection time-of-flight mass spectrometry to dynamically profile the metabolome of 164 loss-of-function mutants in TOR and receptor or receptor-like genes under a time course of rapamycin treatment, generating a dataset with >7000 metabolomics measurements. In order to provide a resource to the broader community, those data are made available for browsing through an interactive data visualization app hosted at https://rapamycin-yeast.ethz.ch. We demonstrate that dynamic metabolite responses to rapamycin are more informative than steady-state responses when recovering known regulators of TOR signaling, as well as identifying new ones. Deletion of a subset of the novel genes causes phenotypes and proteome responses to rapamycin that further implicate them in TOR signaling. We found that one of these genes, CFF1, was connected to the regulation of pyrimidine biosynthesis through URA10. These results demonstrate the efficacy of the approach for flagging novel potential TOR signaling-related genes and highlight the utility of dynamic perturbations when using functional metabolomics to deliver biological insight.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Metaboloma , Sirolimo/farmacologia , Sirolimo/metabolismo
2.
Nat Struct Mol Biol ; 30(3): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702972

RESUMO

Target of rapamycin complex 1 (TORC1) is a protein kinase controlling cell homeostasis and growth in response to nutrients and stresses. In Saccharomyces cerevisiae, glucose depletion triggers a redistribution of TORC1 from a dispersed localization over the vacuole surface into a large, inactive condensate called TOROID (TORC1 organized in inhibited domains). However, the mechanisms governing this transition have been unclear. Here, we show that acute depletion and repletion of EGO complex (EGOC) activity is sufficient to control TOROID distribution, independently of other nutrient-signaling pathways. The 3.9-Å-resolution structure of TORC1 from TOROID cryo-EM data together with interrogation of key interactions in vivo provide structural insights into TORC1-TORC1' and TORC1-EGOC interaction interfaces. These data support a model in which glucose-dependent activation of EGOC triggers binding to TORC1 at an interface required for TOROID assembly, preventing TORC1 polymerization and promoting release of active TORC1.


Assuntos
Proteínas de Saccharomyces cerevisiae , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Polimerização , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/metabolismo , Glucose/metabolismo
3.
J Cell Sci ; 135(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36524422

RESUMO

The budding and fission yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as invaluable model organisms to study conserved fundamental cellular processes. Although super-resolution microscopy has in recent years paved the way to a better understanding of the spatial organization of molecules in cells, its wide use in yeasts has remained limited due to the specific know-how and instrumentation required, contrasted with the relative ease of endogenous tagging and live-cell fluorescence microscopy. To facilitate super-resolution microscopy in yeasts, we have extended the ultrastructure expansion microscopy (U-ExM) method to both S. cerevisiae and S. pombe, enabling a 4-fold isotropic expansion. We demonstrate that U-ExM allows imaging of the microtubule cytoskeleton and its associated spindle pole body, notably unveiling the Sfi1p-Cdc31p spatial organization on the appendage bridge structure. In S. pombe, we validate the method by monitoring the homeostatic regulation of nuclear pore complex number through the cell cycle. Combined with NHS-ester pan-labelling, which provides a global cellular context, U-ExM reveals the subcellular organization of these two yeast models and provides a powerful new method to augment the already extensive yeast toolbox. This article has an associated First Person interview with Kerstin Hinterndorfer and Felix Mikus, two of the joint first authors of the paper.


Assuntos
Proteínas de Saccharomyces cerevisiae , Schizosaccharomyces , Humanos , Schizosaccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopia , Proteínas de Saccharomyces cerevisiae/metabolismo , Corpos Polares do Fuso/metabolismo
4.
Nature ; 611(7935): 399-404, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289347

RESUMO

The SEA complex (SEAC) is a growth regulator that acts as a GTPase-activating protein (GAP) towards Gtr1, a Rag GTPase that relays nutrient status to the Target of Rapamycin Complex 1 (TORC1) in yeast1. Functionally, the SEAC has been divided into two subcomplexes: SEACIT, which has GAP activity and inhibits TORC1, and SEACAT, which regulates SEACIT2. This system is conserved in mammals: the GATOR complex, consisting of GATOR1 (SEACIT) and GATOR2 (SEACAT), transmits amino acid3 and glucose4 signals to mTORC1. Despite its importance, the structure of SEAC/GATOR, and thus molecular understanding of its function, is lacking. Here, we solve the cryo-EM structure of the native eight-subunit SEAC. The SEAC has a modular structure in which a COPII-like cage corresponding to SEACAT binds two flexible wings, which correspond to SEACIT. The wings are tethered to the core via Sea3, which forms part of both modules. The GAP mechanism of GATOR1 is conserved in SEACIT, and GAP activity is unaffected by SEACAT in vitro. In vivo, the wings are essential for recruitment of the SEAC to the vacuole, primarily via the EGO complex. Our results indicate that rather than being a direct inhibitor of SEACIT, SEACAT acts as a scaffold for the binding of TORC1 regulators.


Assuntos
Microscopia Crioeletrônica , Proteínas Ativadoras de GTPase , Complexos Multienzimáticos , Animais , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/ultraestrutura , Mamíferos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Complexos Multienzimáticos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Aminoácidos , Glucose , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/química , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo
5.
Chimia (Aarau) ; 75(12): 1004-1011, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34920768

RESUMO

This article describes four fluorescent membrane tension probes that have been designed, synthesized, evaluated, commercialized and applied to current biology challenges in the context of the NCCR Chemical Biology. Their names are Flipper-TR®, ER Flipper-TR®, Lyso Flipper-TR®, and Mito Flipper-TR®. They are available from Spirochrome.


Assuntos
Corantes Fluorescentes , Potencial da Membrana Mitocondrial , Corantes , Microscopia de Fluorescência
6.
Chimia (Aarau) ; 75(12): 1017-1021, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34920770

RESUMO

To understand the complex biochemistry and biophysics of biological systems, one needs to be able to monitor local concentrations of molecules, physical properties of macromolecular assemblies and activation status of signaling pathways, in real time, within single cells, and at high spatio-temporal resolution. Here we look at the tools that have been / are being / need to be provided by chemical biology to address these challenges. In particular, we highlight the utility of molecular probes that help to better measure mechanical forces and flux through key signalling pathways. Chemical biology can be used to both build biosensors to visualize, but also actuators to perturb biological processes. An emergent theme is the possibility to multiplex measurements of multiple cellular processes. Advances in microscopy automation now allow us to acquire datasets for 1000's of cells. This produces high dimensional datasets that require computer vision approaches that automate image analysis. The high dimensionality of these datasets are often not immediately accessible to human intuition, and, similarly to 'omics technologies, require statistical approaches for their exploitation. The field of biosensor imaging is therefore experiencing a multidisciplinary transition that will enable it to realize its full potential as a tool to provide a deeper appreciation of cell physiology.


Assuntos
Estudos Interdisciplinares , Microscopia , Biologia , Biofísica , Humanos
7.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34785592

RESUMO

During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR]), we investigated the coupling between tension and volume during these asymmetric recoveries. Caveolae depletion and pharmacological inhibition of ion transporters and channels, mTORCs, and the cytoskeleton all affected tension and volume responses. Treatments targeting mTORC2 and specific downstream effectors caused identical changes to both tension and volume responses, their coupling remaining the same. This supports that the coupling of tension and volume responses to osmotic shocks is primarily regulated by mTORC2.


Assuntos
Tamanho Celular , Membranas/metabolismo , Osmose/fisiologia , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , Membranas/efeitos dos fármacos , Modelos Teóricos , Pressão Osmótica/fisiologia
8.
ACS Cent Sci ; 7(6): 954-962, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235256

RESUMO

Sesquiterpenes are a rich source of covalent inhibitors with a long history in traditional medicine and include several important therapeutics and tool compounds. Herein, we report the total synthesis of 16 sesquiterpene lactones via a build/couple/pair strategy, including goyasensolide. Using an alkyne-tagged cellular probe and proteomics analysis, we discovered that goyazensolide selectively targets the oncoprotein importin-5 (IPO5) for covalent engagement. We further demonstrate that goyazensolide inhibits the translocation of RASAL-2, a cargo of IPO5, into the nucleus and perturbs the binding between IPO5 and two specific viral nuclear localization sequences.

9.
Proteomics ; 21(1): e2000166, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32970932

RESUMO

Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin-inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data-dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.


Assuntos
Proteômica , Proteínas de Ciclo Celular , Proteína Fosfatase 2 , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae
10.
Dev Cell ; 55(3): 253-254, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33171106

RESUMO

In this issue of Developmental Cell, Yang et al. (2020) report that both nutrient- and growth factor-dependent signaling impinge upon the RAG GTPases which in turn control TSC residency time on the lysosome membrane and ultimately mTORC1 activity.


Assuntos
Aminoácidos , Proteínas Monoméricas de Ligação ao GTP , Comunicação , Peptídeos e Proteínas de Sinalização Intercelular , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo
11.
Genes (Basel) ; 11(8)2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759652

RESUMO

The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Transdução de Sinais , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/química , Alvo Mecanístico do Complexo 2 de Rapamicina/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
12.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611771

RESUMO

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Assuntos
Membrana Celular/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Membrana Celular/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393676

RESUMO

Target of rapamycin (TOR) is a serine/threonine protein kinase conserved in most eukaryote organisms. TOR assembles into two multiprotein complexes (TORC1 and TORC2), which function as regulators of cellular growth and homeostasis by serving as direct transducers of extracellular biotic and abiotic signals, and, through their participation in intrinsic feedback loops, respectively. TORC1, the better-studied complex, is mainly involved in cell volume homeostasis through regulating accumulation of proteins and other macromolecules, while the functions of the lesser-studied TORC2 are only now starting to emerge. In this Cell Science at a Glance article and accompanying poster, we aim to highlight recent advances in our understanding of TORC2 signalling, particularly those derived from studies in yeast wherein TORC2 has emerged as a major regulator of cell surface homeostasis.


Assuntos
Sirolimo , Serina-Treonina Quinases TOR , Membrana Celular , Homeostase , Alvo Mecanístico do Complexo 2 de Rapamicina , Serina-Treonina Quinases TOR/genética
14.
Mol Cell Proteomics ; 19(4): 655-671, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32102971

RESUMO

Protein phosphorylation cascades play a central role in the regulation of cell growth and protein kinases PKA, Sch9 and Ypk1 take center stage in regulating this process in S. cerevisiae To understand how these kinases co-ordinately regulate cellular functions we compared the phospho-proteome of exponentially growing cells without and with acute chemical inhibition of PKA, Sch9 and Ypk1. Sites hypo-phosphorylated upon PKA and Sch9 inhibition were preferentially located in RRxS/T-motifs suggesting that many are directly phosphorylated by these enzymes. Interestingly, when inhibiting Ypk1 we not only detected several hypo-phosphorylated sites in the previously reported RxRxxS/T-, but also in an RRxS/T-motif. Validation experiments revealed that neutral trehalase Nth1, a known PKA target, is additionally phosphorylated and activated downstream of Ypk1. Signaling through Ypk1 is therefore more closely related to PKA- and Sch9-signaling than previously appreciated and may perform functions previously only attributed to the latter kinases.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Consenso , Proteínas Quinases Dependentes de AMP Cíclico/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Trealase/metabolismo
15.
Mol Cell ; 77(5): 1066-1079.e9, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31902667

RESUMO

Naturally occurring or drug-induced DNA-protein crosslinks (DPCs) interfere with key DNA transactions if not repaired in a timely manner. The unique family of DPC-specific proteases Wss1/SPRTN targets DPC protein moieties for degradation, including stabilized topoisomerase-1 cleavage complexes (Top1ccs). Here, we describe that the efficient DPC disassembly requires Ddi1, another conserved predicted protease in Saccharomyces cerevisiae. We found Ddi1 in a genetic screen of the tdp1 wss1 mutant defective in Top1cc processing. Ddi1 is recruited to a persistent Top1cc-like DPC lesion in an S phase-dependent manner to assist in the eviction of crosslinked protein from DNA. Loss of Ddi1 or its putative protease activity hypersensitizes cells to DPC trapping agents independently from Wss1 and 26S proteasome, implying its broader role in DPC repair. Among the potential Ddi1 targets, we found the core component of Pol II and show that its genotoxin-induced degradation is impaired in ddi1. We propose that the Ddi1 protease contributes to DPC proteolysis.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Animais , DNA Nucleotidiltransferases/genética , DNA Nucleotidiltransferases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Células Sf9 , Spodoptera , Transcrição Gênica
16.
Dev Cell ; 51(4): 476-487.e7, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31743662

RESUMO

Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/fisiologia , Microscopia Crioeletrônica/métodos , Lipídeos , Proteínas de Membrana/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo
17.
J Cell Biol ; 218(7): 2265-2276, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31123183

RESUMO

Target of rapamycin complex 2 (TORC2) is a conserved protein kinase that regulates multiple plasma membrane (PM)-related processes, including endocytosis. Direct, chemical inhibition of TORC2 arrests endocytosis but with kinetics that is relatively slow and therefore inconsistent with signaling being mediated solely through simple phosphorylation cascades. Here, we show that in addition to and independently from regulation of the phosphorylation of endocytic proteins, TORC2 also controls endocytosis by modulating PM tension. Elevated PM tension, upon TORC2 inhibition, impinges on endocytosis at two different levels by (1) severing the bonds between the PM adaptor proteins Sla2 and Ent1 and the actin cytoskeleton and (2) hindering recruitment of Rvs167, an N-BAR-containing protein important for vesicle fission to endocytosis sites. These results underline the importance of biophysical cues in the regulation of cellular and molecular processes.


Assuntos
Proteínas do Citoesqueleto/genética , Endocitose/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteínas dos Microfilamentos/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Membrana Celular/genética , Citoplasma/genética , Fosforilação , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética
18.
Cell Metab ; 29(5): 1019-1021, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067446

RESUMO

Recently in Cell, Kato et al. (2019) and Yang et al. (2019) report that reversible oxidation of multiple methionines in a region of Pbp1, the yeast paralog of ataxin-2 protein, couples metabolic redox status to phase separation of Pbp1 into liquid-like condensates. In turn, Pbp1 condensates inhibit target of rapamycin complex 1 (TORC1) signaling and thereby induce autophagy and restore metabolic homeostasis.


Assuntos
Ataxina-2 , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte , Alvo Mecanístico do Complexo 1 de Rapamicina , Saccharomyces cerevisiae , Transdução de Sinais
19.
Curr Opin Chem Biol ; 50: 19-28, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30897494

RESUMO

Lipids and membranes are often strongly altered in various diseases and pathologies, but are not often targeted for therapeutic advantage. In particular, the sphingolipids are particularly sensitive to altered physiology and have been implicated as important players in not only several rare hereditary diseases, but also other major pathologies, including cancer. This review discusses some potential targets in the sphingolipid pathway and describes how the initial drug compounds have been evolved to create potentially improved therapeutics. This reveals how lipids and their interactions with proteins can be used for therapeutic advantage. We also discuss the possibility that modification of the physical properties of membranes could also affect intracellular signaling and be of therapeutic interest.


Assuntos
Preparações Farmacêuticas , Esfingolipídeos/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Humanos , Transdução de Sinais
20.
Biomolecules ; 8(4)2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513998

RESUMO

Metabolism is the sum of the life-giving chemical processes that occur within a cell. Proper regulation of these processes is essential for all organisms to thrive and prosper. When external factors are too extreme, or if internal regulation is corrupted through genetic or epigenetic changes, metabolic homeostasis is no longer achievable and diseases such as metabolic syndrome or cancer, aging, and, ultimately, death ensue. Metabolic reactions are catalyzed by proteins, and the in vitro kinetic properties of these enzymes have been studied by biochemists for many decades. These efforts led to the appreciation that enzyme activities can be acutely regulated and that this regulation is critical to metabolic homeostasis. Regulation can be mediated through allosteric interactions with metabolites themselves or via post-translational modifications triggered by intracellular signal transduction pathways. More recently, enzyme regulation has attracted the attention of cell biologists who noticed that change in growth conditions often triggers the condensation of diffusely localized enzymes into one or more discrete foci, easily visible by light microscopy. This reorganization from a soluble to a condensed state is best described as a phase separation. As summarized in this review, stimulus-induced phase separation has now been observed for dozens of enzymes suggesting that this could represent a widespread mode of activity regulation, rather than, or in addition to, a storage form of temporarily superfluous enzymes. Building on our recent structure determination of TOROIDs (TORc1 Organized in Inhibited Domain), the condensate formed by the protein kinase Target Of Rapamycin Complex 1 (TORC1), we will highlight that the molecular organization of enzyme condensates can vary dramatically and that future work aimed at the structural characterization of enzyme condensates will be critical to understand how phase separation regulates enzyme activity and consequently metabolic homeostasis. This information may ultimately facilitate the design of strategies to target the assembly or disassembly of specific enzymes condensates as a therapeutic approach to restore metabolic homeostasis in certain diseases.


Assuntos
Enzimas/metabolismo , Epigênese Genética , Processamento de Proteína Pós-Traducional/genética , Proteínas/metabolismo , Citoplasma/enzimologia , Enzimas/genética , Humanos , Cinética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...