Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 23(7): e13664, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35699199

RESUMO

There is no current authoritative accounting of the number of clinical imaging physicists practicing in the United States. Information about the workforce is needed to inform future efforts to secure training pathways and opportunities. In this study, the AAPM Diagnostic Demand and Supply Projection Working Group collected lists of medical physicists from several state registration and licensure programs and the Conference of Radiation Control Program Directors (CRCPD) registry. By cross-referencing individuals among these lists, we were able to estimate the current imaging physics workforce in the United States by extrapolating based on population. The imaging physics workforce in the United States in 2019 consisted of approximately 1794 physicists supporting diagnostic X-ray (1073 board-certified) and 934 physicists supporting nuclear medicine (460 board-certified), with a number of individuals practicing in both subfields. There were an estimated 235 physicists supporting nuclear medicine exclusively (150 board-certified). The estimated total workforce, accounting for overlap, was 2029 medical physicists. These estimates are in approximate agreement with other published studies of segments of the workforce.


Assuntos
Radioterapia (Especialidade) , Diagnóstico por Imagem , Física Médica/educação , Humanos , Física , Radioterapia (Especialidade)/educação , Radiografia , Estados Unidos , Recursos Humanos
2.
Med Phys ; 48(8): 4123-4126, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34250610

RESUMO

The American Board of Radiology offers certification in three specialties of medical physics: Therapeutic Medical Physics, Diagnostic Medical Physics, and Nuclear Medical Physics. Of these specialties, medical nuclear physics has the fewest active diplomates, only a few hundred. The diagnostic medical physics specialty certification incudes a variety of modalities (ultrasound, radiography, computed tomography, and magnetic resonance imaging) yet does not address nuclear medicine imaging or therapy. This separation dates to the beginning of the ABR certification process for medical physicists in 1947; originally there were three certificates available: X-ray and Radium Physics, Medical Nuclear Physics and, as combination of these two, Radiological Physics. Over the span of 75 years since the Medical Nuclear Physics certification was created, much has changed in the scope and proliferation of the nuclear medicine endeavor and the question arises as to the need for change in the preparation process for medical physicists in the field. I offer thanks to our contributors and note that they are writing in the classic style of a debate, the opinions that they argue may or may not reflect their personal views.


Assuntos
Internato e Residência , Medicina Nuclear , Certificação , Física Médica , Humanos , Física Nuclear , Radiografia , Estados Unidos
3.
Med Phys ; 38(7): 4422-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21859043

RESUMO

PURPOSE: The conditions under which vendor performance criteria for digital radiography systems are obtained do not adequately simulate the conditions of actual clinical imaging with respect to radiographic technique factors, scatter production, and scatter control. Therefore, the relationship between performance under ideal conditions and performance in clinical practice remains unclear. Using data from a large complement of systems in clinical use, the authors sought to develop a method to establish expected performance criteria for digital flat-panel radiography systems with respect to signal-to-noise ratio (SNR) versus detector exposure under clinical conditions for thoracic imaging. METHODS: The authors made radiographic exposures of a patient-equivalent chest phantom at 125 kVp and 180 cm source-to-image distance. The mAs value was modified to produce exposures above and below the mAs delivered by automatic exposure control. Exposures measured free-in-air were corrected to the imaging plane by the inverse square law, by the attenuation factor of the phantom, and by the Bucky factor of the grid for the phantom, geometry, and kilovolt peak. SNR was evaluated as the ratio of the mean to the standard deviation (SD) of a region of interest automatically selected in the center of each unprocessed image. Data were acquired from 18 systems, 14 of which were tested both before and after gain and offset calibration. SNR as a function of detector exposure was interpolated using a double logarithmic function to stratify the data into groups of 0.2, 0.5, 1.0, 2.0, and 5.0 mR exposure (1.8, 4.5, 9.0, 18, and 45 microGy air KERMA) to the detector. RESULTS: The mean SNR at each exposure interval after calibration exhibited linear dependence on the mean SNR before calibration (r2=0.9999). The dependence was greater than unity (m = 1.101 +/- 0.006), and the difference from unity was statistically significant (p <0.005). The SD of mean SNR after calibration also exhibited linear dependence on the SD of the mean SNR before calibration (r2 = 0.9997). This dependence was less than unity (m = 0.822 +/- 0.008), and the difference from unity was also statistically significant (p < 0.005). Systems were separated into two groups: systems with a precalibration SNR higher than the median SNR (N = 7), and those with a precalibration SNR lower than the median SNR (N= 7). Posthoc analysis was performed to correct for expanded false positive results. After calibration, the authors noted differences in mean SNR within both high and low groups, but these differences were not statistically significant at the 0.05 level. SNR data from four additional systems and one system from those previously tested after replacement of its detector were compared to the 95% confidence intervals (CI) calculated from the postcalibration SNR data. The comparison indicated that four of these five systems were consistent with the CI derived from the previously tested 14 systems after calibration. Two systems from the paired group that remained outside the CI were studied further. One system was remedied with a grid replacement. The nonconformant behavior of the other system was corrected by replacing the image receptor. CONCLUSIONS: Exposure-dependent SNR measurements under conditions simulating thoracic imaging allowed us to develop criteria for digital flat-panel imaging systems from a single manufacturer. These measurements were useful in identifying systems with discrepant performance, including one with a defective grid, one with a defective detector, and one that had not been calibrated for gain and offset. The authors also found that the gain and offset calibration reduces variation in exposure-dependent SNR performance among the systems.


Assuntos
Artefatos , Intensificação de Imagem Radiográfica/instrumentação , Intensificação de Imagem Radiográfica/normas , Ecrans Intensificadores para Raios X/normas , Calibragem , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...