Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 602(6): 1211-1225, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38381050

RESUMO

Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca2+ -activated K+ -channels. Maternal in vivo oral treatment with the mitochondria-targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6-20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13-14% O2 ) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13-dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+ -activated K+ -channel activator NS1619 and ACh via increased nitric oxide-dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy. KEY POINTS: Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude. Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy. Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria-targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy.


Assuntos
Placenta , Artéria Uterina , Humanos , Ratos , Animais , Gravidez , Feminino , Placenta/metabolismo , Artéria Uterina/fisiologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Roedores , Óxido Nítrico/metabolismo , Ratos Wistar , Hipóxia , Proteína Quinase C/metabolismo , Mitocôndrias/metabolismo
2.
Am J Health Syst Pharm ; 81(13): e345-e352, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38347740

RESUMO

PURPOSE: Nirmatrelvir/ritonavir is one of few options for outpatient treatment of COVID-19, but its use has been limited in transplant recipients due to significant drug interactions with immunosuppressants. Tacrolimus toxicity is possible when the drug is coadministered with nirmatrelvir/ritonavir and may require urgent reduction of tacrolimus levels. This case series describes the use of phenytoin for enzyme induction in 5 adult solid organ transplant recipients with supratherapeutic tacrolimus levels resulting from coadministration with nirmatrelvir/ritonavir. SUMMARY: Solid organ transplant recipients are at high risk for complications related to COVID-19. Outpatient treatment options are limited, and therapeutic drug monitoring is complex in patients requiring quarantine. The 5 solid organ transplant recipients described herein were initiated on nirmatrelvir/ritonavir in the outpatient setting and subsequently presented with supratherapeutic tacrolimus concentrations greater than 59 ng/mL and developed signs and symptoms of tacrolimus toxicity. In all patients, nirmatrelvir/ritonavir and tacrolimus were discontinued, and oral phenytoin (200-400 mg/day) was given for 2 to 4 days. Tacrolimus was resumed once tacrolimus levels decreased to appropriate levels. CONCLUSION: These observations demonstrate that metabolism induction using phenytoin may be a useful strategy in the setting of supratherapeutic tacrolimus levels resulting from concomitant administration with nirmatrelvir/ritonavir.


Assuntos
Interações Medicamentosas , Imunossupressores , Fenitoína , Ritonavir , Tacrolimo , Humanos , Fenitoína/efeitos adversos , Fenitoína/administração & dosagem , Tacrolimo/efeitos adversos , Tacrolimo/administração & dosagem , Ritonavir/administração & dosagem , Ritonavir/efeitos adversos , Pessoa de Meia-Idade , Masculino , Feminino , Imunossupressores/efeitos adversos , Imunossupressores/administração & dosagem , Imunossupressores/farmacocinética , Tratamento Farmacológico da COVID-19 , Idoso , Adulto , Monitoramento de Medicamentos/métodos , Indutores do Citocromo P-450 CYP3A/farmacologia , Transplantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA