Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(6): e3002672, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38935621

RESUMO

Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multiwell plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.


Assuntos
Caenorhabditis elegans , Quimiotaxia , Ensaios de Triagem em Larga Escala , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Animais , Ensaios de Triagem em Larga Escala/métodos , Olfato/fisiologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Software
2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37333363

RESUMO

Throughout history, humans have relied on plants as a source of medication, flavoring, and food. Plants synthesize large chemical libraries and release many of these compounds into the rhizosphere and atmosphere where they affect animal and microbe behavior. To survive, nematodes must have evolved the sensory capacity to distinguish plant-made small molecules (SMs) that are harmful and must be avoided from those that are beneficial and should be sought. This ability to classify chemical cues as a function of their value is fundamental to olfaction, and represents a capacity shared by many animals, including humans. Here, we present an efficient platform based on multi-well plates, liquid handling instrumentation, inexpensive optical scanners, and bespoke software that can efficiently determine the valence (attraction or repulsion) of single SMs in the model nematode, Caenorhabditis elegans. Using this integrated hardware-wetware-software platform, we screened 90 plant SMs and identified 37 that attracted or repelled wild-type animals, but had no effect on mutants defective in chemosensory transduction. Genetic dissection indicates that for at least 10 of these SMs, response valence emerges from the integration of opposing signals, arguing that olfactory valence is often determined by integrating chemosensory signals over multiple lines of information. This study establishes that C. elegans is an effective discovery engine for determining chemotaxis valence and for identifying natural products detected by the chemosensory nervous system.

3.
G3 (Bethesda) ; 5(1): 49-59, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25387828

RESUMO

Ethanol exposure during development causes an array of developmental abnormalities, both physiological and behavioral. In mammals, these abnormalities are collectively known as fetal alcohol effects (FAE) or fetal alcohol spectrum disorder (FASD). We have established a Drosophila melanogaster model of FASD and have previously shown that developmental ethanol exposure in flies leads to reduced expression of insulin-like peptides (dILPs) and their receptor. In this work, we link that observation to dysregulation of fatty acid metabolism and lipid accumulation. Further, we show that developmental ethanol exposure in Drosophila causes oxidative stress, that this stress is a primary cause of the developmental lethality and delay associated with ethanol exposure, and, finally, that one of the mechanisms by which ethanol increases oxidative stress is through abnormal fatty acid metabolism. These data suggest a previously uncharacterized mechanism by which ethanol causes the symptoms associated with FASD.


Assuntos
Modelos Animais de Doenças , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal , Estresse Oxidativo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Transtornos do Espectro Alcoólico Fetal/genética , Transtornos do Espectro Alcoólico Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA