Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 250-259, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34951566

RESUMO

Testing and vaccination have been major components of the strategy for combating the ongoing COVID-19 pandemic. In this study, we have developed a quantitative anti-SARS-CoV-2 spike (S1) IgG antibody assay using a fingerstick dried blood sample. We evaluated the feasibility of using this high-throughput and quantitative anti-SARS-CoV-2 spike (S1) IgG antibody testing assay in vaccinated individuals. Fingerstick blood samples were collected and analyzed from 137 volunteers before and after receiving the Moderna or Pfizer mRNA vaccine. Anti-SARS-CoV-2 S1 IgG antibody could not be detected within the first 7 days after receiving the first vaccine dose, however, the assay reliably detected antibodies from day 14 onwards. In addition, no anti-SARS-CoV-2 nucleocapsid (N) protein IgG antibody was detected in any of the vaccinated or healthy participants, indicating that the anti-SARS-CoV-2 S1 IgG assay is specific for the mRNA vaccine-induced antibodies. The S1 IgG levels detected in fingerstick samples correlated with the levels found in venous blood plasma samples and with the efficacy of venous blood plasma samples in the plaque reduction neutralization test (PRNT). The assay displayed a limit of quantification (LOQ) of 0.59 µg/mL and was found to be linear in the range of 0.51-1000 µg/mL. Finally, its clinical performance displayed a Positive Percent Agreement (PPA) of 100% (95% CI: 0.89-1.00) and a Negative Percent Agreement (NPA) of 100% (95% CI: 0.93-1.00). In summary, the assay described here represents a sensitive, precise, accurate, and simple method for the quantitative detection and monitoring of post-vaccination anti-SARS-CoV-2 spike IgG responses.


Assuntos
Teste Sorológico para COVID-19/métodos , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala/métodos , Imunoensaio/métodos , SARS-CoV-2/imunologia , Manejo de Espécimes/métodos , Anticorpos Antivirais/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Masculino , Glicoproteína da Espícula de Coronavírus , Vacinação
2.
PLoS One ; 16(2): e0243183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33621263

RESUMO

BACKGROUND: Sensitive and high throughput molecular detection assays are essential during the coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The vast majority of the SARS-CoV-2 molecular assays use nasopharyngeal swab (NPS) or oropharyngeal swab (OPS) specimens collected from suspected individuals. However, using NPS or OPS as specimens has apparent drawbacks, e.g. the collection procedures for NPS or OPS specimens can be uncomfortable to some people and may cause sneezing and coughing which in turn generate droplets and/or aerosol particles that are of risk to healthcare workers, requiring heavy use of personal protective equipment. There have been recent studies indicating that self-collected saliva specimens can be used for molecular detection of SARS-CoV-2 and provides more comfort and ease of use for the patients. Here we report the performance of QuantiVirus™ SARS-CoV-2 test using saliva as the testing specimens with or without pooling. METHODS: Development and validation studies were conducted following FDA-EUA and molecular assay validation guidelines. Using SeraCare Accuplex SARS-CoV-2 reference panel, the limit of detection (LOD) and clinical performance studies were performed with the QuantiVirus™ SARS-CoV-2 test. For clinical evaluation, 85 known positive and 90 known negative clinical NPS samples were tested. Additionally, twenty paired NPS and saliva samples collected from recovering COVID-19 patients were tested and the results were further compared to that of the Abbott m2000 SARS-CoV-2 PCR assay. Results of community collected 389 saliva samples for COVID-19 screening by QuantiVirus™ SARS-CoV-2 test were also obtained and analyzed. Additionally, testing of pooled saliva samples was evaluated. RESULTS: The LOD for the QuantiVirus™ SARS-CoV-2 test was confirmed to be 100-200 copies/mL. The clinical performance studies using contrived saliva samples indicated that the positive percentage agreement (PPA) of the QuantiVirus™ SARS-CoV-2 test is 100% at 1xLOD, 1.5xLOD and 2.5xLOD. No cross-reactivity was observed for the QuantiVirus™ SARS-CoV-2 test with common respiratory pathogens. Testing of clinical samples showed a positive percentage agreement (PPA) of 100% (95% CI: 94.6% to 100%) and a negative percentage agreement (NPA) of 98.9% (95% CI: 93.1% to 99.9%). QuantiVirus™ SARS CoV-2 test had 80% concordance rate and no significant difference (p = 0.13) between paired saliva and NPS specimens by Wilcoxon matched pairs signed rank test. Positive test rate was 1.79% for 389 saliva specimens collected from local communities for COVID-19 screening. Preliminary data showed that saliva sample pooling up to 6 samples (1:6 pooling) for SARS-CoV-2 detection is feasible (sensitivity 94.8% and specificity 100%). CONCLUSION: The studies demonstrated that the QuantiVirus™ SARS-CoV-2 test has a LOD of 200 copies/mL in contrived saliva samples. The clinical performance of saliva-based testing is comparable to that of NPS-based testing. Pooling of saliva specimens for SARS-CoV-2 detection is feasible. Saliva based and high-throughput QuantiVirus™ SARS-CoV-2 test offers a highly desirable testing platform during the ongoing COVID-19 pandemic.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/patogenicidade , Saliva/virologia , Manejo de Espécimes/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Adulto Jovem
3.
J Chem Phys ; 152(2): 025101, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31941320

RESUMO

Many fundamental biological processes are regulated by protein-DNA complexes called synaptosomes, which possess multiple interaction sites. Despite the critical importance of synaptosomes, the mechanisms of their formation are not well understood. Because of the multisite nature of participating proteins, it is widely believed that their search for specific sites on DNA involves the formation and breaking of DNA loops and sliding in the looped configurations. In reality, DNA in live cells is densely covered by other biological molecules that might interfere with the formation of synaptosomes. In this work, we developed a theoretical approach to evaluate the role of obstacles in the target search of multisite proteins when the formation of DNA loops and the sliding in looped configurations are possible. Our theoretical method is based on analysis of a discrete-state stochastic model that uses a master equations approach and extensive computer simulations. It is found that the obstacle slows down the search dynamics in the system when DNA loops are long-lived, but the effect is minimal for short-lived DNA loops. In addition, the relative positions of the target and the obstacle strongly influence the target search kinetics. Furthermore, the presence of the obstacle might increase the noise in the system. These observations are discussed using physical-chemical arguments. Our theoretical approach clarifies the molecular mechanisms of formation of protein-DNA complexes with multiple interactions sites.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Proteínas/química , Método de Monte Carlo
4.
J Am Chem Soc ; 140(43): 14272-14288, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30270623

RESUMO

Radical addition to isonitriles (isocyanides) starts and continues all the way to the transition state (TS) mostly as a simple addition to a polarized π-bond. Only after the TS has been passed, the spin density moves to the α-carbon to form the imidoyl radical, the hallmark intermediate of the 1,1-addition-mediated cascades. Addition of alkyl, aryl, heteroatom-substituted, and heteroatom-centered radicals reveals a number of electronic, supramolecular, and conformational effects potentially useful for the practical control of isonitrile-mediated radical cascade transformations. Addition of alkyl radicals reveals two stereoelectronic preferences. First, the radical attack aligns the incipient C···C bond with the aromatic π-system. Second, one of the C-H/C-C bonds at the radical carbon eclipses the isonitrile N-C bond. Combination of these stereoelectronic preferences with entropic penalty explains why the least exergonic reaction (addition of the t-Bu radical) is also the fastest. Heteroatomic radicals reveal further unusual trends. In particular, the Sn radical addition to the PhNC is much faster than addition of the other group IV radicals, despite forming the weakest bond. This combination of kinetic and thermodynamic properties is ideal for applications in control of radical reactivity via dynamic covalent chemistry and may be responsible for the historically broad utility of Sn radicals ("the tyranny of tin"). In addition to polarity and low steric hindrance, radical attack at the relatively strong π-bond of isonitriles is assisted by "chameleonic" supramolecular interactions of the radical center with both the isonitrile π*-system and lone pair. These interactions are yet another manifestation of supramolecular control of radical chemistry.

5.
Chemistry ; 23(14): 3225-3245, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27862399

RESUMO

Stereoelectronic factors account for the apparent reversal of donor-acceptor properties of a variety of functional groups by a simple change of their orientation in space. The new reactivity patterns that arise from spatial anisotropy are associated with chameleonic behavior of common organic functionalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...