Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 357: 114177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35868359

RESUMO

Ischemic stroke is a leading cause of morbidity and mortality, with limited treatments that can facilitate brain regeneration. Neural progenitor cells (NPCs) hold promise for replacing tissue lost to stroke, and biomaterial approaches may improve their efficacy to overcome hurdles in clinical translation. The immune response and its role in stroke pathogenesis and regeneration may interplay with critical mechanisms of stem cell and biomaterial therapies. Cellular therapy can modulate the immune response to reduce toxic neuroinflammation early after ischemia. However, few studies have attempted to harness the regenerative effects of neuroinflammation to augment recovery. Our previous studies demonstrated that intracerebrally transplanted NPCs encapsulated in a chondroitin sulfate-A hydrogel (CS-A + NPCs) can improve vascular regeneration after stroke. In this paper, we found that CS-A + NPCs affect the microglia/macrophage response to promote a regenerative phenotype following stroke in mice. Following transplantation, PPARγ-expressing microglia/macrophages, and MCP-1 and IL-10 protein levels are enhanced. Secreted immunomodulatory factor expression of other factors was altered compared to NPC transplantation alone. Post-stroke depression-like behavior was reduced following cellular and material transplantation. Furthermore, we showed in cultures that microglia/macrophages encapsulated in CS-A had increased expression of angiogenic and arteriogenic mediators. Neutralization with anti-IL-10 antibody negated these effects in vitro. Cumulatively, this work provides a framework for understanding the mechanisms by which immunomodulatory biomaterials can enhance the regenerative effects of cellular therapy for ischemic stroke and other brain injuries.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Materiais Biocompatíveis , Encéfalo/patologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Glicosaminoglicanos , Imunidade , Imunomodulação , Isquemia , Camundongos , Transplante de Células-Tronco , Acidente Vascular Cerebral/patologia
2.
Mol Ther ; 30(7): 2537-2553, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35570396

RESUMO

Bispecific T cell engagers (BiTEs) are bispecific antibodies that redirect T cells to target antigen-expressing tumors. We hypothesized that BiTE-secreting T cells could be a valuable therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) T cells. Glioblastomas represent a good model for solid tumor heterogeneity, representing a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III, and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the single chain variable fragments to generate new BiTE molecules. Compared with CAR T cells, BiTE T cells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE-secreting bivalent T cells compared with bivalent CAR T cells in a glioma mouse model at early phase, but not in the long term. In summary, BiTEs secreted by mono- or multi-valent T cells have potent anti-tumor activity in vitro and in vivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.


Assuntos
Glioblastoma , Subunidade alfa2 de Receptor de Interleucina-13 , Animais , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/patologia , Imunoterapia Adotiva , Camundongos , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
ACS Chem Biol ; 14(9): 1921-1929, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31389687

RESUMO

Heparin and heparan sulfate (HS) are attractive components for constructing biomaterials due to their ability to recruit and regulate the activity of growth factors. The structural and functional heterogeneity of naturally derived heparin and HS is, however, an impediment for the preparation of biomaterials for regenerative medicine. To address this problem, we have prepared hydrogels modified by well-defined synthetic HS-derived disaccharides. Human induced pluripotent cell-derived neural stem cells (HIP-NSCs) encapsulated in a polyethylene glycol-based hydrogel modified by a pendent HS disaccharide that is a known ligand for fibroblast growth factor-2 (FGF-2) exhibited a significant increase in proliferation and self-renewal. This observation is important because evidence is emerging that undifferentiated stems cells can yield significant therapeutic benefits via their paracrine signaling mechanisms. Our data indicate that the HS disaccharide protects FGF-2, which has a very short biological half-live, from degradation. It is anticipated that, by careful selection of a synthetic HS oligosaccharide, it will be possible to control retention and release of specific growth factor, which in turn will provide control over cell fate.


Assuntos
Materiais Biomiméticos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dissacarídeos/farmacologia , Hidrogéis/farmacologia , Células-Tronco Neurais/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/toxicidade , Proliferação de Células/efeitos dos fármacos , Dissacarídeos/síntese química , Dissacarídeos/toxicidade , Fator 2 de Crescimento de Fibroblastos/metabolismo , Heparitina Sulfato/química , Humanos , Hidrogéis/síntese química , Hidrogéis/toxicidade , Células-Tronco Neurais/citologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Estudo de Prova de Conceito , Estabilidade Proteica/efeitos dos fármacos
4.
FASEB J ; 33(11): 11973-11992, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31398290

RESUMO

Invasive spread of glioblastoma (GBM) is linked to changes in chondroitin sulfate (CS) proteoglycan (CSPG)-associated sulfated glycosaminoglycans (GAGs) that are selectively up-regulated in the tumor microenvironment (TME). We hypothesized that inhibiting CS-GAG signaling in the TME would stem GBM invasion. Rat F98 GBM cells demonstrated enhanced preferential cell invasion into oversulfated 3-dimensional composite of CS-A and CS-E [4- and 4,6-sulfated CS-GAG (COMP)] matrices compared with monosulfated (4-sulfated) and unsulfated hyaluronic acid matrices in microfluidics-based choice assays, which is likely influenced by differential GAG receptor binding specificities. Both F98 and human patient-derived glioma stem cells (GSCs) demonstrated a high degree of colocalization of the GSC marker CD133 and CSPGs. The small molecule sulfated GAG antagonist bis-2-methyl-4-amino-quinolyl-6-carbamide (surfen) reduced invasion and focal adhesions in F98 cells encapsulated in COMP matrices and blocked CD133 and antichondroitin sulfate antibody (CS-56) detection of respective antigens in F98 cells and human GSCs. Surfen-treated F98 cells down-regulated CSPG-binding receptor transcripts and protein, as well as total and activated ERK and protein kinase B. Lastly, rats induced with frontal lobe tumors and treated with a single intratumoral dose of surfen demonstrated reduced tumor burden and spread compared with untreated controls. These results present a first demonstration of surfen as an inhibitor of sulfated GAG signaling to stem GBM invasion.-Logun, M. T., Wynens, K. E., Simchick, G., Zhao, W., Mao, L., Zhao, Q., Mukherjee, S., Brat, D. J., Karumbaiah, L. Surfen-mediated blockade of extratumoral chondroitin sulfate glycosaminoglycans inhibits glioblastoma invasion.


Assuntos
Movimento Celular/efeitos dos fármacos , Sulfatos de Condroitina/antagonistas & inibidores , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Ureia/análogos & derivados , Antígeno AC133/metabolismo , Animais , Linhagem Celular Tumoral , Sulfatos de Condroitina/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Glicosaminoglicanos/antagonistas & inibidores , Glicosaminoglicanos/metabolismo , Humanos , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Ureia/farmacologia
5.
J Surg Res ; 239: 269-277, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30884383

RESUMO

BACKGROUND: A novel injectable expanding foam based on hydrophobically modified chitosan (HM-CS) was developed to improve hemostasis during surgeries. HM-CS is an amphiphilic derivative of the natural biopolymer chitosan (CS); HM-CS has been shown to improve the natural hemostatic characteristics of CS, but its internal safety has not been systematically evaluated. The goal of this study was to compare the long-term in vivo safety of HM-CS relative to a commonly used fibrin sealant (FS), TISSEEL (Baxter). METHODS: Sixty-four Sprague-Dawley rats (275-325 g obtained from Charles River Laboratories) were randomly assigned to control (n = 16) or experimental (n = 48) groups. Samples of the test materials (HM-CS [n = 16], CS [n = 16], and FS [n = 16]) applied to a nonlethal liver excision (0.4 ± 0.3 g of the medial lobe) in rats were left inside the abdomen to degrade. Animals were observed daily for signs of morbidity and mortality. Surviving animals were sacrificed at 1 and 6 wk; the explanted injury sites were microscopically assessed. RESULTS: All animals (64/64) survived both the 1- and 6-wk time points without signs of morbidity. Histological examination showed a comparable pattern of degradation for the various test materials. FS remnants and significant adhesions to neighboring tissues were observed at 6 wk. Residual CS and HM-CS were observed at the 6 wk with fatty deposits at the site of injury. Minimal adhesions were observed for CS and HM-CS. CONCLUSIONS: The internal safety observed in the HM-CS test group after abdominal implantation indicates that injectable HM-CS expanding foam may be an appropriate internal use hemostatic candidate.


Assuntos
Perda Sanguínea Cirúrgica/prevenção & controle , Quitosana/administração & dosagem , Hemostasia Cirúrgica/métodos , Hemostáticos/administração & dosagem , Animais , Quitosana/efeitos adversos , Quitosana/química , Modelos Animais de Doenças , Adesivo Tecidual de Fibrina/administração & dosagem , Hemostáticos/efeitos adversos , Hemostáticos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fígado/cirurgia , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley
6.
Stem Cells Transl Med ; 8(6): 575-585, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666821

RESUMO

Bone morphogenetic protein 2 (BMP-2)-loaded collagen sponges remain the clinical standard for treatment of large bone defects when there is insufficient autograft, despite associated complications. Recent efforts to negate comorbidities have included biomaterials and gene therapy approaches to extend the duration of BMP-2 release and activity. In this study, we compared the collagen sponge clinical standard to chondroitin sulfate glycosaminoglycan (CS-GAG) scaffolds as a delivery vehicle for recombinant human BMP-2 (rhBMP-2) and rhBMP-2 expression via human BMP-2 gene inserted into mesenchymal stem cells (BMP-2 MSC). We demonstrated extended release of rhBMP-2 from CS-GAG scaffolds compared to their collagen sponge counterparts, and further extended release from CS-GAG gels seeded with BMP-2 MSC. When used to treat a challenging critically sized femoral defect model in rats, both rhBMP-2 and BMP-2 MSC in CS-GAG induced comparable bone formation to the rhBMP-2 in collagen sponge, as measured by bone volume, strength, and stiffness. We conclude that CS-GAG scaffolds are a promising delivery vehicle for controlling the release of rhBMP-2 and to mediate the repair of critically sized segmental bone defects. Stem Cells Translational Medicine 2019;8:575-585.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea/efeitos dos fármacos , Sulfatos de Condroitina/química , Alicerces Teciduais/química , Fator de Crescimento Transformador beta/farmacologia , Animais , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Doenças Ósseas/veterinária , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Colágeno/química , Feminino , Humanos , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Ratos , Ratos Nus , Proteínas Recombinantes/farmacologia
7.
Neuropsychopharmacology ; 42(10): 1962-1971, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28425496

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) increases sociality in humans and animals. Release of serotonin (5-HT) is thought to have an important role in the increase in social behaviors, but the mechanisms underlying these effects are poorly understood. Despite the advantages of nonhuman primate models, no studies have examined the mechanisms of the social effects of MDMA in nonhuman primates. The behavior and vocalizations of four group-housed squirrel monkeys were examined following administration of MDMA, its enantiomers, and methamphetamine. 5-HT receptor antagonists and agonists were given as drug pretreatments. Data were analyzed using linear mixed-effects models. MDMA and its enantiomers increased affiliative social behaviors and vocalizations, whereas methamphetamine had only modest effects on affiliative behaviors. Pretreatment with a 5-HT2A receptor antagonist and a 5-HT2C receptor agonist attenuated the MDMA-induced increase in social behaviors, while a 5-HT1A receptor antagonist did not alter affiliative vocalizations and increased MDMA-induced social contact. Nonhuman primates show MDMA-specific increases in affiliative social behaviors following MDMA administration, in concordance with human and rodent studies. MDMA-induced increases in social behaviors are 5-HT2A, but not 5-HT1A, receptor dependent. Understanding the neurochemical mechanisms mediating the prosocial effects of MDMA could help in the development of novel therapeutics with the unique social effects of MDMA but fewer of its limitations.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Psicotrópicos/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Comportamento Social , Animais , Relação Dose-Resposta a Droga , Modelos Lineares , Masculino , Metanfetamina/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Saimiri , Serotoninérgicos/farmacologia , Vocalização Animal/efeitos dos fármacos , Vocalização Animal/fisiologia
8.
J Mater Chem B ; 4(36): 6052-6064, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28217304

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive form of astrocytoma accounting for a majority of primary malignant brain tumors in the United States. Chondroitin sulfate proteoglycans (CSPGs) and their glycosaminoglycan (GAG) side chains are key constituents of the brain extracellular matrix (ECM) implicated in promoting tumor invasion. However, the mechanisms by which sulfated CS-GAGs promote brain tumor invasion are currently unknown. We hypothesize that glioma cell invasion is triggered by the altered sulfation of CS-GAGs in the tumor extracellular environment, and that this is potentially mediated by independent mechanisms involving CXCL12/CXCR4 and LAR signaling respectively. This was tested in vitro by encapsulating the human glioma cell line U87MG-EGFP into monosulfated (4-sulfated; CS-A), composite (4 and 4,6-sulfated; CS-A/E), unsulfated hyaluronic acid (HA), and unsulfated agarose (AG; polysaccharide) hydrogels within microfluidics-based choice assays. Our results demonstrated the enhanced preferential cell invasion into composite hydrogels, when compared to other hydrogel matrices (p<0.05). Haptotaxis assays demonstrated the significantly (p<0.05) faster migration of U87MG-EGFP cells in CXCL12 containing CS-GAG hydrogels when compared to other hydrogel matrices containing the same chemokine concentration. This is likely due to the significantly (p<0.05) greater affinity of composite CS-GAGs to CXCL12 over other hydrogel matrices. Results from qRT-PCR assays further demonstrated the significant (p<0.05) upregulation of the chemokine receptor CXCR4, and the CSPG receptor LAR in glioma cells within CS-GAG hydrogels compared to control hydrogels. Western blot analysis of cell lysates derived from glioma cells encapsulated in different hydrogel matrices further corroborate qRT-PCR results, and indicate the presence of a potential variant of LAR that is selectively expressed only in glioma cells encapsulated in CS-GAG hydrogels. These results suggest that sulfated CS-GAGs may directly induce enhanced invasion and haptotaxis of glioma cells associated with aggressive brain tumors via distinct mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...