Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626206

RESUMO

Laboratory model organisms have provided a window into how the immune system functions. An increasing body of evidence, however, suggests that the immune responses of naive laboratory animals may differ substantially to those of their wild counterparts. Past exposure, environmental challenges and physiological condition may all impact on immune responsiveness. Chronic infections of soil-transmitted helminths, which we define as establishment of adult, fecund worms, impose significant health burdens on humans, livestock and wildlife, with limited treatment success. In laboratory mice, Th1 versus Th2 immune polarisation is the major determinant of helminth infection outcome. Here we compared antigen-specific immune responses to the soil-transmitted whipworm Trichuris muris between controlled laboratory and wild free-ranging populations of house mice (Mus musculus domesticus). Wild mice harbouring chronic, low-level infections produced lower levels of cytokines in response to Trichuris antigen than laboratory-housed C57BL/6 mice. Wild mouse effector/memory CD4+ T cell phenotype reflected the antigen-specific cytokine response across the Th1/Th2 spectrum. Increasing egg shedding was associated with body condition loss. However, local Trichuris-specific Th1/Th2 balance was positively associated with worm burden only in older wild mice. Thus, although the fundamental relationships between the CD4+ T helper cell response and resistance to T. muris infection are similar in both laboratory and wild M. m. domesticus, there are quantitative differences and age-specific effects that are analogous to human immune responses. These context-dependent immune responses demonstrate the fundamental importance of understanding the differences between model and natural systems for translating mechanistic models to 'real world' immune function.


Assuntos
Imunidade Adaptativa , Camundongos Endogâmicos C57BL , Tricuríase , Trichuris , Animais , Trichuris/imunologia , Tricuríase/imunologia , Tricuríase/parasitologia , Camundongos , Imunidade Adaptativa/imunologia , Modelos Animais de Doenças , Feminino , Animais Selvagens/imunologia , Animais Selvagens/parasitologia , Células Th2/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Antígenos de Helmintos/imunologia , Masculino
2.
Sci Rep ; 14(1): 6954, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521809

RESUMO

Mucin protein glycosylation is important in determining biological properties of mucus gels, which form protective barriers at mucosal surfaces of the body such as the intestine. Ecological factors including: age, sex, and diet can change mucus barrier properties by modulating mucin glycosylation. However, as our understanding stems from controlled laboratory studies in house mice, the combined influence of ecological factors on mucin glycosylation in real-world contexts remains limited. In this study, we used histological staining with 'Alcian Blue, Periodic Acid, Schiff's' and 'High-Iron diamine' to assess the acidic nature of mucins stored within goblet cells of the intestine, in a wild mouse population (Mus musculus). Using statistical models, we identified sex as among the most influential ecological factors determining the acidity of intestinal mucin glycans in wild mice. Our data from wild mice and experiments using laboratory mice suggest estrogen signalling associates with an increase in the relative abundance of sialylated mucins. Thus, estrogen signalling may underpin sex differences observed in the colonic mucus of wild and laboratory mice. These findings highlight the significant influence of ecological parameters on mucosal barrier sites and the complementary role of wild populations in augmenting standard laboratory studies in the advancement of mucus biology.


Assuntos
Colo , Mucinas , Camundongos , Feminino , Masculino , Animais , Mucinas/metabolismo , Colo/patologia , Células Caliciformes/metabolismo , Intestinos , Estrogênios/metabolismo , Mucina-2/metabolismo , Mucosa Intestinal/metabolismo
3.
Discov Immunol ; 2(1): kyad005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38567065

RESUMO

The murine bone marrow has a central role in immune function and health as the primary source of leukocytes in adult mice. Laboratory mice provide a human-homologous, genetically manipulable and reproducible model that has enabled an immeasurable volume of high-quality immunological research. However, recent research has questioned the translatability of laboratory mouse research into humans and proposed that the exposure of mice to their wild and natural environment may hold the key to further immunological breakthroughs. To date, there have been no studies providing an in-depth cellular analysis of the wild mouse bone marrow. This study utilized wild mice from an isolated island population (Isle of May, Scotland, UK) and performed flow cytometric and histological analysis to characterize the myeloid, lymphoid, hematopoietic progenitor, and adipocyte compartments within the wild mouse bone marrow. We find that, compared to laboratory mouse bone marrow, the wild mouse bone marrow differs in every cell type assessed. Some of the major distinctions include; a smaller B cell compartment with an enriched presence of plasma cells, increased proportions of KLRG1+ CD8+ T cells, diminished CD11b expression in the myeloid lineage and a five-fold enlargement of the eosinophil compartment. We conclude that the wild mouse bone marrow is dramatically distinct from its laboratory counterparts, with multiple phenotypes that to our knowledge have never been observed in laboratory models. Further research into these unique features may uncover novel immunological mechanisms and grant a greater understanding of the role of the immune system in a natural setting.

4.
PLoS Pathog ; 17(7): e1009768, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329367

RESUMO

The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection.


Assuntos
Colo/imunologia , Colo/parasitologia , Enteropatias Parasitárias/imunologia , Macrófagos/imunologia , Tricuríase/imunologia , Animais , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Subunidade alfa de Receptor de Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Trichuris/imunologia
5.
Inflamm Bowel Dis ; 26(3): 360-368, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31840738

RESUMO

BACKGROUND: Identifying the factors that contribute to chronicity in inflamed colitic tissue is not trivial. However, in mouse models of colitis, we can investigate at preclinical timepoints. We sought to validate murine Trichuris muris infection as a model for identification of factors that promote development of chronic colitis. METHODS: We compared preclinical changes in mice with a resolving immune response to T. muris (resistant) vs mice that fail to expel the worms and develop chronic colitis (susceptible). Findings were then validated in healthy controls and patients with suspected or confirmed IBD. RESULTS: The receptor for advanced glycation end products (RAGE) was highly dysregulated between resistant and susceptible mice before the onset of any pathological signs. Increased soluble RAGE (sRAGE) in the serum and feces of resistant mice correlated with reduced colitis scores. Mouse model findings were validated in a preliminary clinical study: fecal sRAGE was differentially expressed in patients with active IBD compared with IBD in remission, patients with IBD excluded, or healthy controls. CONCLUSIONS: Preclinical changes in mouse models can identify early pathways in the development of chronic inflammation that human studies cannot. We identified the decoy receptor sRAGE as a potential mechanism for protection against chronic inflammation in colitis in mice and humans. We propose that the RAGE pathway is clinically relevant in the onset of chronic colitis and that further study of sRAGE in IBD may provide a novel diagnostic and therapeutic target.


Assuntos
Colite/imunologia , Enteropatias Parasitárias/imunologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Tricuríase/imunologia , Animais , Antígenos de Neoplasias , Biomarcadores/metabolismo , Doença Crônica , Colite/parasitologia , Colite/patologia , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica/genética , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Enteropatias Parasitárias/patologia , Masculino , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Proteínas Quinases Ativadas por Mitógeno , RNA Mensageiro/genética , Linfócitos T Auxiliares-Indutores/patologia , Tricuríase/patologia , Trichuris
6.
BMC Immunol ; 17(1): 12, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245920

RESUMO

BACKGROUND: Eosinophils are innate immune cells present in the intestine during steady state conditions. An intestinal eosinophilia is a hallmark of many infections and an accumulation of eosinophils is also observed in the intestine during inflammatory disorders. Classically the function of eosinophils has been associated with tissue destruction, due to the release of cytotoxic granule contents. However, recent evidence has demonstrated that the eosinophil plays a more diverse role in the immune system than previously acknowledged, including shaping adaptive immune responses and providing plasma cell survival factors during the steady state. Importantly, it is known that there are regional differences in the underlying immunology of the small and large intestine, but whether there are differences in context of the intestinal eosinophil in the steady state or inflammation is not known. RESULTS: Our data demonstrates that there are fewer IgA(+) plasma cells in the small intestine of eosinophil-deficient ΔdblGATA-1 mice compared to eosinophil-sufficient wild-type mice, with the difference becoming significant post-infection with Toxoplasma gondii. Remarkably, and in complete contrast, the absence of eosinophils in the inflamed large intestine does not impact on IgA(+) cell numbers during steady state, and is associated with a significant increase in IgA(+) cells post-infection with Trichuris muris compared to wild-type mice. Thus, the intestinal eosinophil appears to be less important in sustaining the IgA(+) cell pool in the large intestine compared to the small intestine, and in fact, our data suggests eosinophils play an inhibitory role. The dichotomy in the influence of the eosinophil over small and large intestinal IgA(+) cells did not depend on differences in plasma cell growth factors, recruitment potential or proliferation within the different regions of the gastrointestinal tract (GIT). CONCLUSIONS: We demonstrate for the first time that there are regional differences in the requirement of eosinophils for maintaining IgA+ cells between the large and small intestine, which are more pronounced during inflammation. This is an important step towards further delineation of the enigmatic functions of gut-resident eosinophils.


Assuntos
Eosinófilos/imunologia , Inflamação/imunologia , Intestino Grosso/imunologia , Intestino Delgado/imunologia , Plasmócitos/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Tricuríase/imunologia , Trichuris/imunologia , Animais , Células Cultivadas , Microambiente Celular , Eosinófilos/microbiologia , Eosinófilos/parasitologia , Fator de Transcrição GATA1/genética , Imunoglobulina A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Plasmócitos/microbiologia , Plasmócitos/parasitologia
7.
J Immunol ; 182(5): 3055-62, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19234202

RESUMO

The large intestine is a major site of infection and disease, yet little is known about how immunity is initiated within this site and the role of dendritic cells (DCs) in this process. We used the well-established model of Trichuris muris infection to investigate the innate response of colonic DCs in mice that are inherently resistant or susceptible to infection. One day postinfection, there was a significant increase in the number of immature colonic DCs in resistant but not susceptible mice. This increase was sustained at day 7 postinfection in resistant mice when the majority of the DCs were mature. There was no increase in DC numbers in susceptible mice until day 13 postinfection. In resistant mice, most colonic DCs were located in or adjacent to the epithelium postinfection. There were also marked differences in the expression of colonic epithelial chemokines in resistant mice and susceptible mice. Resistant mice had significantly increased levels of epithelium-derived CCL2, CCL3, CCL5, and CCL20 compared with susceptible mice. Furthermore, administering neutralizing CCL5 and CCL20 Abs to resistant mice prevented DC recruitment. This study provides clear evidence of differences in the kinetics of DC responses in hosts inherently resistant and susceptible to infection. DC responses in the colon correlate with resistance to infection. Differences in the production of DC chemotactic chemokines by colonic epithelial cells in response to infection in resistant vs susceptible mice may explain the different kinetics of the DC response.


Assuntos
Movimento Celular/imunologia , Células Dendríticas/citologia , Imunidade Inata , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Intestino Grosso/citologia , Tricuríase/imunologia , Trichuris/imunologia , Animais , Comunicação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Predisposição Genética para Doença , Intestino Grosso/imunologia , Intestino Grosso/patologia , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Tricuríase/patologia
8.
Neuron ; 58(1): 78-88, 2008 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-18400165

RESUMO

The intrinsic period of circadian clocks is their defining adaptive property. To identify the biochemical mechanisms whereby casein kinase1 (CK1) determines circadian period in mammals, we created mouse null and tau mutants of Ck1 epsilon. Circadian period lengthened in CK1epsilon-/-, whereas CK1epsilon(tau/tau) shortened circadian period of behavior in vivo and suprachiasmatic nucleus firing rates in vitro, by accelerating PERIOD-dependent molecular feedback loops. CK1epsilon(tau/tau) also accelerated molecular oscillations in peripheral tissues, revealing its global role in circadian pacemaking. CK1epsilon(tau) acted by promoting degradation of both nuclear and cytoplasmic PERIOD, but not CRYPTOCHROME, proteins. Together, these whole-animal and biochemical studies explain how tau, as a gain-of-function mutation, acts at a specific circadian phase to promote degradation of PERIOD proteins and thereby accelerate the mammalian clockwork in brain and periphery.


Assuntos
Relógios Biológicos/genética , Caseína Quinase 1 épsilon/deficiência , Ritmo Circadiano/genética , Mutação , Proteínas tau/deficiência , Proteínas tau/metabolismo , Animais , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/fisiologia , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Circadianas Period , Fosforilação , Núcleo Supraquiasmático/fisiologia , Fatores de Tempo , Proteínas tau/fisiologia
9.
Physiol Genomics ; 31(3): 521-30, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17848604

RESUMO

The Siberian hamster exhibits the key winter adaptive strategy of daily torpor, during which metabolism and heart rate are slowed for a few hours and body temperature declines by up to 20 degrees C, allowing substantial energetic savings. Previous studies of hibernators in which temperature drops by >30 degrees C for many days to weeks have revealed decreased transcription and translation during hypometabolism and identified several key physiological pathways involved. Here we used a cDNA microarray to define cardiac transcript changes over the course of a daily torpor bout and return to normothermia, and we show that, in common with hibernators, a relatively small proportion of the transcriptome (<5%) exhibited altered expression over a torpor bout. Pathways exhibiting significantly altered gene expression included transcriptional regulation, RNA stability and translational control, globin regulation, and cardiomyocyte function. Remarkably, gene representatives of the entire ubiquitylation pathway were significantly altered over the torpor bout, implying a key role for cardiac protein turnover and translation during a low-temperature torpor bout. The circadian clock maintained rhythmic transcription during torpor. Quantitative PCR profiling of heart, liver, and lung and in situ hybridization studies of clock genes in the hypothalamic circadian clock in the suprachiasmatic nucleus revealed that many circadian regulated transcripts exhibited synchronous alteration in expression during arousal. Our data highlight the potential importance of genes involved in protein turnover as part of the adaptive strategy of low-temperature torpor in a seasonal mammal.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Perfilação da Expressão Gênica , Hibernação , Mesocricetus/fisiologia , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Animais , Temperatura Corporal , Peso Corporal , Cricetinae , DNA Complementar , Hibridização In Situ , Masculino , Mesocricetus/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...