Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell ; 187(17): 4586-4604.e20, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39137778

RESUMO

Respiratory infections cause significant morbidity and mortality, yet it is unclear why some individuals succumb to severe disease. In patients hospitalized with avian A(H7N9) influenza, we investigated early drivers underpinning fatal disease. Transcriptomics strongly linked oleoyl-acyl-carrier-protein (ACP) hydrolase (OLAH), an enzyme mediating fatty acid production, with fatal A(H7N9) early after hospital admission, persisting until death. Recovered patients had low OLAH expression throughout hospitalization. High OLAH levels were also detected in patients hospitalized with life-threatening seasonal influenza, COVID-19, respiratory syncytial virus (RSV), and multisystem inflammatory syndrome in children (MIS-C) but not during mild disease. In olah-/- mice, lethal influenza infection led to survival and mild disease as well as reduced lung viral loads, tissue damage, infection-driven pulmonary cell infiltration, and inflammation. This was underpinned by differential lipid droplet dynamics as well as reduced viral replication and virus-induced inflammation in macrophages. Supplementation of oleic acid, the main product of OLAH, increased influenza replication in macrophages and their inflammatory potential. Our findings define how the expression of OLAH drives life-threatening viral disease.


Assuntos
COVID-19 , Influenza Humana , Animais , Humanos , Camundongos , COVID-19/virologia , COVID-19/genética , Influenza Humana/virologia , Replicação Viral , Macrófagos/metabolismo , Macrófagos/virologia , Feminino , Masculino , SARS-CoV-2 , Pulmão/virologia , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Camundongos Knockout , Carga Viral , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Infecções por Orthomyxoviridae/virologia , Infecções Respiratórias/virologia , Criança
2.
J Leukoc Biol ; 115(1): 36-46, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837379

RESUMO

Unconventional T cells represent a promising therapeutic agent to overcome the current limitations of immunotherapies due to their universal T-cell receptors, ability to respond directly to cytokine stimulation, and capacity to recruit and modulate conventional immune cells in the tumor microenvironment. Like conventional T cells, unconventional T cells can enter a dysfunctional state, and the functional differences associated with this state may provide insight into the discrepancies observed in their role in antitumor immunity in various cancers. The exhaustive signature of unconventional T cells differs from conventional αß T cells, and understanding the differences in the mechanisms underlying exhaustive differentiation in these cell types may aid in the discovery of new treatments to improve sustained antitumor responses. Ongoing clinical trials investigating therapies that leverage unconventional T-cell populations have shown success in treating hematologic malignancies and reducing the immunosuppressive tumor environment. However, several hurdles remain to extend these promising results into solid tumors. Here we discuss the current knowledge on unconventional T-cell function/dysfunction and consider how the incorporation of therapies that modulate unconventional T-cell exhaustion may aid in overcoming the current limitations of immunotherapy. Additionally, we discuss how components of the tumor microenvironment alter the functions of unconventional T cells and how these changes can affect tumor infiltration by lymphocytes and alter conventional T-cell responses.


Assuntos
Neoplasias Hematológicas , Neoplasias , Humanos , Neoplasias/patologia , Subpopulações de Linfócitos T/metabolismo , Imunoterapia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
3.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076996

RESUMO

Background & aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus. Here, we dissected the role of MAIT cells in vivo using a spontaneous colitis model in a genetically diverse mouse strain. Methods: Multiparameter spectral flow cytometry and scRNAseq were used to characterize MAIT and immune cell dynamics and transcriptomic signatures respectively, in the collaborative-cross strain, CC011/Unc and CC011/Unc- Traj33 -/- . Results: In contrast to many conventional mouse laboratory strains, the CC011 strain harbors a high baseline population of MAIT cells. We observed an age-related increase in colonic MAIT cells, Th17 cells, regulatory T cells, and neutrophils, which paralleled the development of spontaneous colitis. This progression manifested histological traits reminiscent of human IBD. The transcriptomic analysis of colonic MAIT cells from CC011 revealed an activation profile consistent with an inflammatory milieu, marked by an enhanced type-III response. Notably, IL-17A was abundantly secreted by MAIT cells in the colons of afflicted mice. Conversely, in the MAIT cell-deficient CC011-Traj33-/- mice, there was a notable absence of significant colonic histopathology. Furthermore, myeloperoxidase staining indicated a substantial decrease in colonic neutrophils. Conclusions: Our findings suggest that MAIT cells play a pivotal role in modulating the severity of intestinal pathology, potentially orchestrating the inflammatory process by driving the accumulation of neutrophils within the colonic environment.

4.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38105962

RESUMO

The "innate-like" T cell compartment, known as Tinn, represents a diverse group of T cells that straddle the boundary between innate and adaptive immunity, having the ability to mount rapid responses following activation. In mice, this ability is acquired during thymic development. We explored the transcriptional landscape of Tinn compared to conventional T cells (Tconv) in the human thymus and blood using single cell RNA sequencing and flow cytometry. We reveal that in human blood, the majority of Tinn cells, including iNKT, MAIT, and Vδ2+Vγ9+ T cells, share an effector program characterized by the expression of unique chemokine and cytokine receptors, and cytotoxic molecules. This program is driven by specific transcription factors, distinct from those governing Tconv cells. Conversely, only a fraction of thymic Tinn cells displays an effector phenotype, while others share transcriptional features with developing Tconv cells, indicating potential divergent developmental pathways. Unlike the mouse, human Tinn cells do not differentiate into multiple effector subsets but develop a mixed type I/type III effector potential. To conduct a comprehensive cross-species analysis, we constructed a murine Tinn developmental atlas and uncovered additional species-specific distinctions, including the absence of type II Tinn cells in humans, which implies distinct immune regulatory mechanisms across species. The study provides insights into the development and functionality of Tinn cells, emphasizing their role in immune responses and their potential as targets for therapeutic interventions.

5.
Sci Immunol ; 8(84): eade5343, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390222

RESUMO

Most human killer cell immunoglobulin-like receptors (KIR) are expressed by natural killer (NK) cells and recognize HLA class I molecules as ligands. KIR3DL3 is a conserved but polymorphic inhibitory KIR recognizing a B7 family ligand, HHLA2, and is implicated for immune checkpoint targeting. The expression profile and biological function of KIR3DL3 have been somewhat elusive, so we searched extensively for KIR3DL3 transcripts, revealing highly enriched expression in γδ and CD8+ T cells rather than NK cells. These KIR3DL3-expressing cells are rare in the blood and thymus but more common in the lungs and digestive tract. High-resolution flow cytometry and single-cell transcriptomics showed that peripheral blood KIR3DL3+ T cells have an activated transitional memory phenotype and are hypofunctional. The T cell receptor (TCR) usage is biased toward genes from early rearranged TCR-α variable segments or Vδ1 chains. In addition, we show that TCR-mediated stimulation can be inhibited through KIR3DL3 ligation. Whereas we detected no impact of KIR3DL3 polymorphism on ligand binding, variants in the proximal promoter and at residue 86 can reduce expression. Together, we demonstrate that KIR3DL3 is up-regulated alongside unconventional T cell stimulation and that individuals may vary in their ability to express KIR3DL3. These results have implications for the personalized targeting of KIR3DL3/HHLA2 checkpoint inhibition.


Assuntos
Linfócitos T CD8-Positivos , Células Matadoras Naturais , Humanos , Ligantes , Timo , Receptores de Antígenos de Linfócitos T alfa-beta , Imunoglobulinas , Receptores KIR
6.
Semin Immunol ; 60: 101658, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36182863

RESUMO

Innate T (Tinn) cells are a collection of T cells with important regulatory functions that have a crucial role in immunity towards tumors, bacteria, viruses, and in cell-mediated autoimmunity. In mice, the two main αß Tinn cell subsets include the invariant NKT (iNKT) cells that recognize glycolipid antigens presented by non-polymorphic CD1d molecules and the mucosal associated invariant T (MAIT) cells that recognize vitamin B metabolites presented by the non-polymorphic MR1 molecules. Due to their ability to promptly secrete large quantities of cytokines either after T cell antigen receptor (TCR) activation or upon exposure to tissue- and antigen-presenting cell-derived cytokines, Tinn cells are thought to act as a bridge between the innate and adaptive immune systems and have the ability to shape the overall immune response. Their swift response reflects the early acquisition of helper effector programs during their development in the thymus, independently of pathogen exposure and prior to taking up residence in peripheral tissues. Several studies recently profiled, in an unbiased manner, the transcriptomes of mouse thymic iNKT and MAIT cells at the single cell level. Based on these data, we re-examine in this review how Tinn cells develop in the mouse thymus and undergo effector differentiation.


Assuntos
Células T Invariantes Associadas à Mucosa , Células T Matadoras Naturais , Camundongos , Humanos , Animais , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo
7.
J Immunol ; 208(6): 1389-1395, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35246495

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are highly abundant in human blood and tissues. Most MAIT cells have an invariant TCRα-chain that uses T cell receptor α-variable 1-2 (TRAV1-2) joined to TRAJ33/20/12 and recognizes metabolites from bacterial riboflavin synthesis bound to the Ag-presenting molecule MHC class I related (MR1). Our attempts to identify alternative MR1-presented Ags led to the discovery of rare MR1-restricted T cells with non-TRAV1-2 TCRs. Because altered Ag specificity likely alters affinity for the most potent known Ag, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), we performed bulk TCRα- and TCRß-chain sequencing and single-cell-based paired TCR sequencing on T cells that bound the MR1-5-OP-RU tetramer with differing intensities. Bulk sequencing showed that use of V genes other than TRAV1-2 was enriched among MR1-5-OP-RU tetramerlow cells. Although we initially interpreted these as diverse MR1-restricted TCRs, single-cell TCR sequencing revealed that cells expressing atypical TCRα-chains also coexpressed an invariant MAIT TCRα-chain. Transfection of each non-TRAV1-2 TCRα-chain with the TCRß-chain from the same cell demonstrated that the non-TRAV1-2 TCR did not bind the MR1-5-OP-RU tetramer. Thus, dual TCRα-chain expression in human T cells and competition for the endogenous ß-chain explains the existence of some MR1-5-OP-RU tetramerlow T cells. The discovery of simultaneous expression of canonical and noncanonical TCRs on the same T cell means that claims of roles for non-TRAV1-2 TCR in MR1 response must be validated by TCR transfer-based confirmation of Ag specificity.


Assuntos
Células T Invariantes Associadas à Mucosa , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mucosa , Receptores de Antígenos de Linfócitos T/metabolismo
8.
PLoS Pathog ; 18(3): e1010337, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255101

RESUMO

HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Austrália , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos HLA-A , Humanos , Povos Indígenas , Vírus da Influenza B , Leucócitos Mononucleares , Peptídeos
9.
Clin Transl Immunology ; 10(9): e1336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522380

RESUMO

OBJECTIVES: Although co-expression of CD38 and HLA-DR reflects T-cell activation during viral infections, high and prolonged CD38+HLA-DR+ expression is associated with severe disease. To date, the mechanism underpinning expression of CD38+HLA-DR+ is poorly understood. METHODS: We used mouse models of influenza A/H9N2, A/H7N9 and A/H3N2 infection to investigate mechanisms underpinning CD38+MHC-II+ phenotype on CD8+ T cells. To further understand MHC-II trogocytosis on murine CD8+ T cells as well as the significance behind the scenario, we used adoptively transferred transgenic OT-I CD8+ T cells and A/H3N2-SIINKEKL infection. RESULTS: Analysis of influenza-specific immunodominant DbNP366 +CD8+ T-cell responses showed that CD38+MHC-II+ co-expression was detected on both virus-specific and bystander CD8+ T cells, with increased numbers of both CD38+MHC-II+CD8+ T-cell populations observed in immune organs including the site of infection during severe viral challenge. OT-I cells adoptively transferred into MHC-II-/- mice had no MHC-II after infection, suggesting that MHC-II was acquired via trogocytosis. The detection of CD19 on CD38+MHC-II+ OT-I cells supports the proposition that MHC-II was acquired by trogocytosis sourced from B cells. Co-expression of CD38+MHC-II+ on CD8+ T cells was needed for optimal recall following secondary infection. CONCLUSIONS: Overall, our study demonstrates that both virus-specific and bystander CD38+MHC-II+ CD8+ T cells are recruited to the site of infection during severe disease, and that MHC-II presence occurs via trogocytosis from antigen-presenting cells. Our findings highlight the importance of the CD38+MHC-II+ phenotype for CD8+ T-cell recall.

10.
Nat Commun ; 12(1): 2931, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006841

RESUMO

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/genética , Antígeno HLA-A24/genética , Povos Indígenas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Austrália , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cães , Epitopos de Linfócito T/imunologia , Feminino , Frequência do Gene , Antígeno HLA-A24/imunologia , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Vírus da Influenza B/imunologia , Vírus da Influenza B/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade
11.
Nat Commun ; 12(1): 2691, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976217

RESUMO

How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/ß cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.


Assuntos
Formação de Anticorpos/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Influenza Humana/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Estudos de Coortes , Citocinas/metabolismo , Hospitalização/estatística & dados numéricos , Humanos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Pessoa de Meia-Idade , Filogenia , Vacinação/métodos
12.
Cell Rep ; 34(4): 108674, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33503413

RESUMO

Naive and memory T cells are maintained in a quiescent state, yet capable of rapid response and differentiation to antigen challenge via molecular mechanisms that are not fully understood. In naive cells, the deletion of Foxo1 following thymic development results in the increased expression of multiple AP-1 family members, rendering T cells less able to respond to antigenic challenge. Similarly, in the absence of FOXO1, post-infection memory T cells exhibit the characteristics of extended activation and senescence. Age-based analysis of human peripheral T cells reveals that levels of FOXO1 and its downstream target, TCF7, are inversely related to host age, whereas the opposite is found for AP-1 factors. These characteristics of aging also correlate with the formation of T cells manifesting features of cellular senescence. Our work illustrates a role for FOXO1 in the active maintenance of stem-like properties in T cells at the timescales of acute infection and organismal life span.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proteína Forkhead Box O1/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD8-Positivos/citologia , Senescência Celular/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Adulto Jovem
13.
Nat Commun ; 11(1): 6238, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288744

RESUMO

Most T lymphocytes leave the thymus as naïve cells with limited functionality. However, unique populations of innate-like T cells differentiate into functionally distinct effector subsets during their development in the thymus. Here, we profiled >10,000 differentiating thymic invariant natural killer T (iNKT) cells using single-cell RNA sequencing to produce a comprehensive transcriptional landscape that highlights their maturation, function, and fate decisions at homeostasis. Our results reveal transcriptional profiles that are broadly shared between iNKT and mucosal-associated invariant T (MAIT) cells, illustrating a common core developmental program. We further unmask a mutual requirement for Hivep3, a zinc finger transcription factor and adapter protein. Hivep3 is expressed in early precursors and regulates the post-selection proliferative burst, differentiation and functions of iNKT cells. Altogether, our results highlight the common requirements for the development of innate-like T cells with a focus on how Hivep3 impacts the maturation of these lymphocytes.


Assuntos
Diferenciação Celular/imunologia , Imunidade Inata/imunologia , Células T Matadoras Naturais/imunologia , Análise de Célula Única/métodos , Linfócitos T/imunologia , Timo/imunologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica/métodos , Imunidade Inata/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Invariantes Associadas à Mucosa/citologia , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Análise de Sequência de RNA/métodos , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo , Timo/citologia , Timo/metabolismo
14.
PLoS Pathog ; 16(8): e1008714, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750095

RESUMO

Seasonal influenza virus infections cause 290,000-650,000 deaths annually and severe morbidity in 3-5 million people. CD8+ T-cell responses towards virus-derived peptide/human leukocyte antigen (HLA) complexes provide the broadest cross-reactive immunity against human influenza viruses. Several universally-conserved CD8+ T-cell specificities that elicit prominent responses against human influenza A viruses (IAVs) have been identified. These include HLA-A*02:01-M158-66 (A2/M158), HLA-A*03:01-NP265-273, HLA-B*08:01-NP225-233, HLA-B*18:01-NP219-226, HLA-B*27:05-NP383-391 and HLA-B*57:01-NP199-207. The immunodominance hierarchies across these universal CD8+ T-cell epitopes were however unknown. Here, we probed immunodominance status of influenza-specific universal CD8+ T-cells in HLA-I heterozygote individuals expressing two or more universal HLAs for IAV. We found that while CD8+ T-cell responses directed towards A2/M158 were generally immunodominant, A2/M158+CD8+ T-cells were markedly diminished (subdominant) in HLA-A*02:01/B*27:05-expressing donors following ex vivo and in vitro analyses. A2/M158+CD8+ T-cells in non-HLA-B*27:05 individuals were immunodominant, contained optimal public TRBV19/TRAV27 TCRαß clonotypes and displayed highly polyfunctional and proliferative capacity, while A2/M158+CD8+ T cells in HLA-B*27:05-expressing donors were subdominant, with largely distinct TCRαß clonotypes and consequently markedly reduced avidity, proliferative and polyfunctional efficacy. Our data illustrate altered immunodominance patterns and immunodomination within human influenza-specific CD8+ T-cells. Accordingly, our work highlights the importance of understanding immunodominance hierarchies within individual donors across a spectrum of prominent virus-specific CD8+ T-cell specificities prior to designing T cell-directed vaccines and immunotherapies, for influenza and other infectious diseases.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-B27/genética , Epitopos Imunodominantes/imunologia , Influenza Humana/imunologia , Adulto , Idoso , Epitopos de Linfócito T/imunologia , Feminino , Antígeno HLA-B27/imunologia , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Nat Commun ; 11(1): 2857, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504069

RESUMO

Virtual memory T (TVM) cells are antigen-naïve CD8+ T cells that exist in a semi-differentiated state and exhibit marked proliferative dysfunction in advanced age. High spare respiratory capacity (SRC) has been proposed as a defining metabolic characteristic of antigen-experienced memory T (TMEM) cells, facilitating rapid functionality and survival. Given the semi-differentiated state of TVM cells and their altered functionality with age, here we investigate TVM cell metabolism and its association with longevity and functionality. Elevated SRC is a feature of TVM, but not TMEM, cells and it increases with age in both subsets. The elevated SRC observed in aged mouse TVM cells and human CD8+ T cells from older individuals is associated with a heightened sensitivity to IL-15. We conclude that elevated SRC is a feature of TVM, but not TMEM, cells, is driven by physiological levels of IL-15, and is not indicative of enhanced functionality in CD8+ T cells.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/ultraestrutura , Diferenciação Celular/imunologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A/imunologia , Influenza Humana/sangue , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Camundongos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/ultraestrutura , Adulto Jovem
17.
Commun Biol ; 3(1): 223, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385344

RESUMO

The disassembly of apoptotic cells into small membrane-bound vesicles termed apoptotic bodies (ApoBDs) is a hallmark of apoptosis; however, the functional significance of this process is not well defined. We recently discovered a new membrane protrusion (termed beaded apoptopodia) generated by apoptotic monocytes which fragments to release an abundance of ApoBDs. To investigate the function of apoptotic monocyte disassembly, we used influenza A virus (IAV) infection as a proof-of-concept model, as IAV commonly infects monocytes in physiological settings. We show that ApoBDs generated from IAV-infected monocytes contained IAV mRNA, protein and virions and consequently, could facilitate viral propagation in vitro and in vivo, and induce a robust antiviral immune response. We also identified an antipsychotic, Haloperidol, as an unexpected inhibitor of monocyte cell disassembly which could impair ApoBD-mediated viral propagation under in vitro conditions. Together, this study reveals a previously unrecognised function of apoptotic monocyte disassembly in the pathogenesis of IAV infections.


Assuntos
Vesículas Extracelulares/virologia , Vírus da Influenza A/fisiologia , Monócitos/virologia , Antivirais/farmacologia , Haloperidol/farmacologia , Vírus da Influenza A/efeitos dos fármacos
18.
Allergy ; 75(10): 2477-2490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32181878

RESUMO

Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.


Assuntos
Hipersensibilidade , Células T Invariantes Associadas à Mucosa , Alérgenos , Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Humanos , Antígenos de Histocompatibilidade Menor
19.
J Immunol ; 204(5): 1119-1133, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988181

RESUMO

Mucosal-associated invariant T (MAIT) cells are important for immune responses against microbial infections. Although known to undergo marked numerical changes with age in humans, our understanding of how MAIT cells are altered during different phases across the human life span is largely unknown. Although also abundant in the tissues, our study focuses on MAIT cell analyses in blood. Across the human life span, we show that naive-like MAIT cells in umbilical cord blood switch to a central/effector memory-like profile that is sustained into older age. Whereas low-grade levels of plasma cytokine/chemokine were apparent in older donors (>65 y old), surprisingly, they did not correlate with the ex vivo MAIT hyperinflammatory cytokine profile observed in older adults. Removal of MAIT cells from older individuals and an aged environment resulted in the reversal of the baseline effector molecule profile comparable with MAIT cells from younger adults. An upregulated basal inflammatory profile accounted for reduced Escherichia coli-specific responses in aged MAIT cells compared with their young adult counterparts when fold change in expression levels of GzmB, CD107a, IFN-γ, and TNF was examined. However, the magnitude of antimicrobial MR1-dependent activation remained as potent and polyfunctional as with younger adults. Paired TCRαß analyses of MAIT cells revealed large clonal expansions in older adults and tissues that rivalled, remarkably, the TCRαß repertoire diversity of virus-specific CD8+ T cells. These data suggest that MAIT cells in older individuals, although associated with large clonal TCRαß expansions and increased baseline inflammatory potential, demonstrate plasticity and provide potent antimicrobial immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Adulto , Idoso , Escherichia coli/imunologia , Feminino , Granzimas/imunologia , Humanos , Interferon gama/imunologia , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/imunologia , Vírus/imunologia
20.
Methods Mol Biol ; 2098: 141-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792820

RESUMO

Sensing of influenza A virus (IAV) infection by pattern recognition receptors can occur by either direct infection of lung epithelial cells or uptake of virus-infected cells by innate cells such as dendritic cells/monocytes. This triggers a series of downstream events including activation of the inflammasome, the production of cytokines, chemokines, and the upregulation of stress-induced ligands that can lead to the activation of innate cells. These cells include innate lymphocytes such as MAIT, NKT, NK, and γδ T cells. Here we describe a method used to allow activation of human innate lymphocytes in co-culture with an IAV-infected human lung epithelial cell line (A549) to measure ex vivo effector functions (TNF and IFNγ) in a mixed culture environment. We describe (1) infection of the human lung epithelial cell line, (2) co-culture with PBMC, and (3) measurement of activation using intracellular cytokine staining.


Assuntos
Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Técnicas de Cocultura , Vírus da Influenza A , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunofenotipagem , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Influenza Humana/metabolismo , Influenza Humana/virologia , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA