Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 25(2): e202300136, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37815526

RESUMO

We developed a high-content image-based screen that utilizes the pro-inflammatory stimulus lipopolysaccharide (LPS) and murine macrophages (RAW264.7) with the goal of enabling the identification of novel anti-inflammatory lead compounds. We screened 2,259 bioactive compounds with annotated mechanisms of action (MOA) to identify compounds that block the LPS-induced phenotype in macrophages. We utilized a set of seven fluorescence microscopy probes to generate images that were used to train and optimize a deep neural network classifier to distinguish between unstimulated and LPS-stimulated macrophages. The top hits from the deep learning classifier were validated using a linear classifier trained on individual cells and subsequently investigated in a multiplexed cytokine secretion assay. All 12 hits significantly modulated the expression of at least one cytokine upon LPS stimulation. Seven of these were allosteric inhibitors of the mitogen-activated protein kinase kinase (MEK1/2) and showed similar effects on cytokine expression. This deep learning morphological assay identified compounds that modulate the innate immune response to LPS and may aid in identifying new anti-inflammatory drug leads.


Assuntos
Aprendizado Profundo , NF-kappa B , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas , Óxido Nítrico/metabolismo
2.
PLoS One ; 18(8): e0289279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527243

RESUMO

Single-cell transcriptomics is essential for understanding biological variability among cells in a heterogenous population. Acquiring high-quality single-cell sequencing data from a tissue sample has multiple challenges including isolation of individual cells as well as amplification of the genetic material. Commercially available techniques require the isolation of individual cells from a tissue through extensive manual manipulation before single cell sequence data can be acquired. However, since cells within a tissue have different dissociation constants, enzymatic and mechanical manipulation do not guarantee the isolation of a homogenous population of cells. To overcome this drawback, in this research we have developed a revolutionary approach that utilizes a fully automated nanopipette technology in combination with magnetic nanoparticles to obtain high quality sequencing reads from individual cells within an intact tissue thereby eliminating the need for manual manipulation and single cell isolation. With the proposed technology, it is possible to sample an individual cell within the tissue multiple times to obtain longitudinal information. Single-cell RNAseq was achieved by aspirating only1-5% of sub-single-cell RNA content from individual cells within fresh frozen tissue samples. As a proof of concept, aspiration was carried out from 22 cells within a breast cancer tissue slice using quartz nanopipettes. The mRNA from the aspirate was then selectively captured using magnetic nanoparticles. The RNAseq data from aspiration of 22 individual cells provided high alignment rates (80%) with 2 control tissue samples. The technology is exceptionally simple, quick and efficient as the entire cell targeting and aspiration process is fully automated.


Assuntos
Perfilação da Expressão Gênica , RNA , RNA/genética , RNA Mensageiro/genética , Separação Celular , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos
3.
Proc Natl Acad Sci U S A ; 119(49): e2208458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36449542

RESUMO

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Metabolômica , Benchmarking , Fusão Gênica , Biblioteca Gênica
4.
J Biol Chem ; 293(13): 4940-4951, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378846

RESUMO

In highly polarized cells such as neurons, compartmentalization of mRNA and of local protein synthesis enables remarkably fast, precise, and local responses to external stimuli. These responses are highly important for neuron growth cone guidance, synapse formation, and regeneration following injury. Because an altered spatial distribution of mRNA can result in mental retardation or neurodegenerative diseases, subcellular transcriptome analysis of neurons could be a useful tool for studying these conditions, but current techniques, such as in situ hybridization, bulk microarray, and RNA-Seq, impose tradeoffs between spatial resolution and multiplexing. To obtain a comprehensive analysis of the cell body versus neurite transcriptome from the same neuron, we have recently developed a label-free, single-cell nanobiopsy platform based on scanning ion conductance microscopy that uses electrowetting within a quartz nanopipette to extract cellular material from living cells with minimal disruption of the cellular membrane and milieu. In this study, we used this platform to collect samples from the cell bodies and neurites of human neurons and analyzed the mRNA pool with multiplex RNA sequencing. The minute volume of a nanobiopsy sample allowed us to extract samples from several locations in the same cell and to map the various mRNA species to specific subcellular locations. In addition to previously identified transcripts, we discovered new sets of mRNAs localizing to neurites, including nuclear genes such as Eomes and Hmgb3 In summary, our single-neuron nanobiopsy analysis provides opportunities to improve our understanding of intracellular mRNA transport and local protein composition in neuronal growth, connectivity, and function.


Assuntos
Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/biossíntese , Análise de Sequência de RNA , Biópsia/métodos , Proteína HMGB3/biossíntese , Proteína HMGB3/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas com Domínio T/biossíntese , Proteínas com Domínio T/genética
5.
Diagn Microbiol Infect Dis ; 87(1): 11-16, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27771207

RESUMO

Understanding the contribution of relapse and reinfection to recurrent Clostridium difficile infection (CDI) has implications for therapy and infection prevention, respectively. We used whole genome sequencing to determine the relation of C. difficile strains isolated from patients with recurrent CDI at an academic medical center in the United States. Thirty-five toxigenic C. difficile isolates from 16 patients with 19 recurrent CDI episodes with median time of 53.5days (range, 13-362) between episodes were whole genome sequenced on the Illumina MiSeq platform. In 84% (16) of recurrences, the cause of recurrence was relapse with prior strain of C. difficile. In 16% (3) of recurrent episodes, reinfection with a new strain of C. difficile was the cause. In conclusion, the majority of CDI recurrences at our institution were due to infection with the same strain rather than infection with a new strain.


Assuntos
Clostridioides difficile/classificação , Clostridioides difficile/genética , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Genoma Bacteriano , Genótipo , Análise de Sequência de DNA , Centros Médicos Acadêmicos , Adulto , Idoso , Idoso de 80 Anos ou mais , Clostridioides difficile/isolamento & purificação , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estados Unidos/epidemiologia
6.
ACS Sens ; 1(3): 265-271, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27602408

RESUMO

In this report, we demonstrated a handheld wireless voltage-clamp amplifier for current measurement of nanopore sensors. This amplifier interfaces a sensing probe and connects wirelessly with a computer or smartphone for the required stimulus input, data processing and storage. To test the proposed Signal Transduction by Ion Nanogating (STING) wireless amplifier, in the current study the system was tested with a nano-pH sensor to measure pH of standard buffer solutions and the performance was compared against the commercial voltage-clamp amplifier. To our best knowledge, STING amplifier is the first miniaturized wireless voltage-clamp platform operated with a customized smart-phone application (app).

7.
J Clin Microbiol ; 53(7): 2329-31, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878343

RESUMO

Successful sequencing of the Clostridium difficile genome requires high-quality genomic DNA (gDNA) as the starting material. gDNA extraction using conventional methods is laborious. We describe here an optimized method for the simple extraction of C. difficile gDNA using the QIAamp DNA minikit, which yielded high-quality sequence reads on the Illumina MiSeq platform.


Assuntos
Clostridioides difficile/genética , DNA Bacteriano/isolamento & purificação , Genoma Bacteriano , Análise de Sequência de DNA/métodos , DNA Bacteriano/química , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
8.
RSC Adv ; 5(65): 52436-52443, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27708772

RESUMO

Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular pH of individual cells within a cell population is challenging with existing technologies, and there is a need to engineer new methodologies. In this paper, we discuss the use of nanopipette technology to overcome the limitations of intracellular pH measurements at the single-cell level. We have developed a nano-pH probe through physisorption of chitosan onto hydroxylated quartz nanopipettes with extremely small pore sizes (~100 nm). The dynamic pH range of the nano-pH probe was from 2.6 to 10.7 with a sensitivity of 0.09 units. We have performed single-cell intracellular pH measurements using non-cancerous and cancerous cell lines, including human fibroblasts, HeLa, MDA-MB-231 and MCF-7, with the pH nanoprobe. We have further demonstrated the real-time continuous single-cell pH measurement capability of the sensor, showing the cellular pH response to pharmaceutical manipulations. These findings suggest that the chitosan-functionalized nanopore is a powerful nano-tool for pH sensing at the single-cell level with high temporal and spatial resolution.

9.
ACS Nano ; 8(1): 546-53, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24279711

RESUMO

The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.


Assuntos
Biópsia/métodos , Genômica , Nanotecnologia , Análise de Célula Única , Sequência de Bases , Células Cultivadas , Primers do DNA , Humanos , Microscopia/métodos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA