Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001928

RESUMO

Central nervous system (CNS) melioidosis caused by Burkholderia pseudomallei is being increasingly reported. Because of the high mortality associated with CNS melioidosis, understanding the underlying mechanism of B. pseudomallei pathogenesis in the CNS needs to be intensively investigated to develop better therapeutic strategies against this deadly disease. The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells to benefit the infection process. In this study, the role of the T6SS accessory protein TagAB-5 in B. pseudomallei pathogenicity was examined using the human microglial cell line HCM3, a unique resident immune cell of the CNS acting as a primary mediator of inflammation. We constructed B. pseudomallei tagAB-5 mutant and complementary strains by the markerless allele replacement method. The effects of tagAB-5 deletion on the pathogenicity of B. pseudomallei were studied by bacterial infection assays of HCM3 cells. Compared with the wild type, the tagAB-5 mutant exhibited defective pathogenic abilities in intracellular replication, multinucleated giant cell formation, and induction of cell damage. Additionally, infection by the tagAB-5 mutant elicited a decreased production of interleukin 8 (IL-8) in HCM3, suggesting that efficient pathogenicity of B. pseudomallei is required for IL-8 production in microglia. However, no significant differences in virulence in the Galleria mellonella model were observed between the tagAB-5 mutant and the wild type. Taken together, this study indicated that microglia might be an important intracellular niche for B. pseudomallei, particularly in CNS infection, and TagAB-5 confers B. pseudomallei pathogenicity in these cells.

2.
Microbiol Spectr ; 11(4): e0132023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409935

RESUMO

The bacterial pathogen Burkholderia pseudomallei causes human melioidosis, which can infect the brain, leading to encephalitis and brain abscesses. Infection of the nervous system is a rare condition but is associated with an increased risk of mortality. Burkholderia intracellular motility A (BimA) was reported to play an important role in the invasion and infection of the central nervous system in a mouse model. Thus, to gain insight of the cellular mechanisms underlying the pathogenesis of neurological melioidosis, we explored the human neuronal proteomics to identify the host factors that are up- and downregulated during Burkholderia infection. When infected the SH-SY5Y cells with B. pseudomallei K96243 wild-type (WT), 194 host proteins showed a fold change of >2 compared with uninfected cells. Moreover, 123 proteins showed a fold change of >2 when infected with a knockout bimA mutant (ΔbimA) mutant compared with WT. The differentially expressed proteins were mainly associated with metabolic pathways and pathways linked to human diseases. Importantly, we observed the downregulation of proteins in the apoptosis and cytotoxicity pathway, and in vitro investigation with the ΔbimA mutant revealed the association of BimA with the induction of these pathways. Additionally, we disclosed that BimA was not required for invasion into the neuron cell line but was necessary for effective intracellular replication and multinucleated giant cell (MNGC) formation. These findings show the extraordinary capacity of B. pseudomallei in subverting and interfering with host cellular systems to establish infection and extend our understanding of B. pseudomallei BimA involvement in the pathogenesis of neurological melioidosis. IMPORTANCE Neurological melioidosis, caused by Burkholderia pseudomallei, can result in severe neurological damage and enhance the mortality rate of melioidosis patients. We investigate the involvement of the virulent factor BimA, which mediates actin-based motility, in the intracellular infection of neuroblastoma SH-SY5Y cells. Using proteomics-based analysis, we provide a list of host factors exploited by B. pseudomallei. The expression level of selected downregulated proteins in neuron cells infected with the ΔbimA mutant was determined by quantitative reverse transcription-PCR and was consistent with our proteomic data. The role of BimA in the apoptosis and cytotoxicity of SH-SY5Y cells infected by B. pseudomallei was uncovered in this study. Additionally, our research demonstrates that BimA is required for successful intracellular survival and cell fusion upon infection of neuron cells. Our findings have significant implications for understanding the pathogenesis of B. pseudomallei infections and developing novel therapeutic strategies to combat this deadly disease.


Assuntos
Burkholderia pseudomallei , Burkholderia , Melioidose , Neuroblastoma , Camundongos , Animais , Humanos , Burkholderia/fisiologia , Melioidose/microbiologia , Proteômica , Burkholderia pseudomallei/genética , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...