Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports Med Open ; 10(1): 65, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38834878

RESUMO

BACKGROUND: Abnormal posture (e.g. loss of lordosis) has been associated with the occurrence of musculoskeletal pain. Stretching tight muscles while strengthening the antagonists represents the most common method to treat the assumed muscle imbalance. However, despite its high popularity, there is no quantitative synthesis of the available evidence examining the effectiveness of the stretch-and-strengthen approach. METHODS: A systematic review with meta-analysis was conducted, searching PubMed, Web of Science and Google Scholar. We included controlled clinical trials investigating the effects of stretching or strengthening on spinal and lumbopelvic posture (e.g., pelvic tilt, lumbar lordosis, thoracic kyphosis, head tilt) in healthy individuals. Effect sizes were pooled using robust variance estimation. To rate the certainty about the evidence, the GRADE approach was applied. RESULTS: A total of 23 studies with 969 participants were identified. Neither acute (d = 0.01, p = 0.97) nor chronic stretching (d=-0.19, p = 0.16) had an impact on posture. Chronic strengthening was associated with large improvements (d=-0.83, p = 0.01), but no study examined acute effects. Strengthening was superior (d = 0.81, p = 0.004) to stretching. Sub-analyses found strengthening to be effective in the thoracic and cervical spine (d=-1.04, p = 0.005) but not in the lumbar and lumbopelvic region (d=-0.23, p = 0.25). Stretching was ineffective in all locations (p > 0.05). CONCLUSION: Moderate-certainty evidence does not support the use of stretching as a treatment of muscle imbalance. In contrast, therapists should focus on strengthening programs targeting weakened muscles.

2.
J Sport Health Sci ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735533

RESUMO

BACKGROUND: When recommending avoidance of static stretching prior to athletic performance, authors and practitioners commonly refer to available systematic reviews. However, effect sizes (ES) in previous reviews were extracted in major part from studies lacking control conditions and/or pre-post testing designs. Also, currently available reviews conducted calculations without accounting for multiple study outcomes, with ES: -0.03 to 0.10, which would commonly be classified as trivial. METHODS: Since new meta-analytical software and controlled research articles have appeared since 2013, we revisited the available literature and performed a multilevel meta-analysis using robust variance estimation of controlled pre-post trials to provide updated evidence. Furthermore, previous research described reduced electromyography activity-also attributable to fatiguing training routines-as being responsible for decreased subsequent performance. The second part of this study opposed stretching and alternative interventions sufficient to induce general fatigue to examine whether static stretching induces higher performance losses compared to other exercise routines. RESULTS: Including 83 studies with more than 400 ES from 2012 participants, our results indicate a significant, small ES for a static stretch-induced maximal strength loss (ES = -0.21, p = 0.003), with high magnitude ES (ES = -0.84, p = 0.004) for stretching durations ≥60 s per bout when compared to passive controls. When opposed to active controls, the maximal strength loss ranges between ES: -0.17 to -0.28, p < 0.001 and 0.040 with mostly no to small heterogeneity. However, stretching did not negatively influence athletic performance in general (when compared to both passive and active controls); in fact, a positive effect on subsequent jumping performance (ES = 0.15, p = 0.006) was found in adults. CONCLUSION: Regarding strength testing of isolated muscles (e.g., leg extensions or calf raises), our results confirm previous findings. Nevertheless, since no (or even positive) effects could be found for athletic performance, our results do not support previous recommendations to exclude static stretching from warm-up routines prior to, for example, jumping or sprinting.

3.
Sports Med Open ; 10(1): 45, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637473

RESUMO

BACKGROUND: Increases in maximal strength and muscle volume represent central aims of training interventions. Recent research suggested that the chronic application of stretch may be effective in inducing hypertrophy. The present systematic review therefore aimed to syntheisize the evidence on changes of strength and muscle volume following chronic static stretching. METHODS: Three data bases were sceened to conduct a systematic review with meta-analysis. Studies using randomized, controlled trials with longitudinal (≥ 2 weeks) design, investigating strength and muscle volume following static stretching in humans, were included. Study quality was rated by two examiners using the PEDro scale. RESULTS: A total of 42 studies with 1318 cumulative participants were identified. Meta-analyses using robust variance estimation showed small stretch-mediated maximal strength increases (d = 0.30 p < 0.001) with stretching duration and intervention time as significant moderators. Including all studies, stretching induced small magnitude, but significant hypertrophy effects (d = 0.20). Longer stretching durations and intervention periods as well as higher training frequencies revealed small (d = 0.26-0.28), but significant effects (p < 0.001-0.005), while lower dosage did not reach the level of significance (p = 0.13-0.39). CONCLUSIONS: While of minor effectiveness, chronic static stretching represents a possible alternative to resistance training when aiming to improve strength and increase muscle size. As a dose-response relationship may exist, higher stretch durations and frequencies as well as long program durations should be further elaborated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...