Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(3): 1291-1303, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38131194

RESUMO

The magnetic properties of spinel nanoparticles can be controlled by synthesizing particles of a specific shape and size. The synthesized nanorods, nanodots and cubic nanoparticles have different crystal planes selectively exposed on the surface. The surface effects on the static magnetic properties are well documented, while their influence on spin waves dispersion is still being debated. Our ability to manipulate spin waves using surface and defect engineering in magnetic nanoparticles is the key to designing magnonic devices. We synthesized cubic and spherical nanoparticles of a classical antiferromagnetic material Co3O4 to study the shape and size effects on their static and dynamic magnetic proprieties. Using a combination of experimental methods, we probed the magnetic and crystal structures of our samples and directly measured spin wave dispersions using inelastic neutron scattering. We found a weak, but unquestionable, increase in exchange interactions for the cubic nanoparticles as compared to spherical nanoparticle and bulk powder reference samples. Interestingly, the exchange interactions in spherical nanoparticles have bulk-like properties, despite a ferromagnetic contribution from canted surface spins.

2.
J Phys Chem Lett ; 14(1): 295-301, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599148

RESUMO

The orange carotenoid protein plays a vital role in the photoprotection of cyanobacteria and exhibits a significant structural change upon photoactivation. A rarely considered aspect is the importance of internal protein dynamics in facilitating the structural transition to the active state. In this study, we use quasielastic neutron scattering under (in situ) blue light illumination for the first time to directly probe the protein dynamics of the orange carotenoid protein in the dark-adapted and active states. This shows that the localized internal dynamics of amino acid residues is significantly enhanced upon photoactivation. This is attributed to the photoinduced structural changes exposing larger areas of the protein surface to the solvent, thus resulting in a higher degree of motional freedom. However, the flexibility of the W288A mutant assumed to mimic the active state structure is found to be different, thus highlighting the importance of in situ experiments.


Assuntos
Proteínas de Bactérias , Iluminação , Proteínas de Bactérias/química , Conformação Proteica , Luz , Nêutrons
3.
ACS Appl Mater Interfaces ; 14(6): 8126-8136, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35119825

RESUMO

A combined experimental and theoretical study of H2 adsorption was carried out in Co-CUK-1 and Mg-CUK-1, two isostructural metal-organic frameworks (MOFs) that consist of M2+ ions (M = Co and Mg) coordinated to pyridine-2,4-dicarboxylate (pdc2-) and OH- ligands. These MOFs possess saturated metal centers in distorted octahedral environments and narrow pore sizes and display high chemical and thermal stability. Previous experimental studies revealed that Co-CUK-1 exhibits a H2 uptake of 183 cm3 g-1 at 77 K/1.0 atm [ Angew. Chem., Int. Ed. 2007, 46, 272-275, DOI: 10.1002/anie.200601627], while that for Mg-CUK-1 under the same conditions is 240 cm3 g-1 on the basis of the experimental measurements carried out herein. The theoretical H2 adsorption isotherms are in close agreement with the corresponding experimental measurements for simulations using electrostatic and polarizable potentials of the adsorbate. Through simulated annealing calculations, it was found that the primary binding site for H2 in both isostructural analogues is localized proximal to the center of the aromatic rings belonging to the pdc2- linkers. Inelastic neutron scattering (INS) spectroscopic studies of H2 adsorbed in both MOFs revealed a rotational tunnelling transition occurring at around 8 meV in the corresponding spectra; this peak represents H2 adsorbed at the primary binding site. Two-dimensional quantum rotation calculations for H2 localized at the primary and secondary binding sites in both MOFs yielded rotational energy levels that are in agreement with the transitions observed in the INS spectra. Even though both M-CUK-1 analogues possess different metal ions, they exhibit similar electrostatic environments, modeled structures at H2 saturation, and rotational potentials for H2 adsorbed at the most favorable adsorption site. Overall, this study demonstrates how important molecular-level details of the H2 adsorption mechanism inside MOF micropores can be derived from a combination of experimental measurements and theoretical calculations using two stable and isostructural MOFs with saturated metal centers and small pore windows as model systems.

4.
Struct Dyn ; 8(5): 054501, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34660845

RESUMO

Dynamics of water and other small molecules confined in nanoporous materials is one of the current topics in condensed matter physics. One popular host material is a benzenedicarboxylate-bridging metal (III) complex abbreviated to MIL-53, whose chemical formula is M(OH)[C6H2(CO2)2R2] where M = Cr, Al, Fe and R = H, OH, NH2, COOH. These materials absorb not only water but also ammonia molecules. We have measured the quasi-elastic neutron scattering of MIL-53(Fe)-(COOH)2·2H2O and MIL-53(Fe)-(COOH)2·3NH3 which have full guest occupancy and exhibit the highest proton conductivity in the MIL-53 family. In a wide relaxation time region (τ = 10-12-10-8 s), two relaxations with Arrhenius temperature dependence were found in each sample. It is of interest that their activation energies are smaller than those of bulk H2O and NH3 liquids. The momentum transfer dependence of the relaxation time and the temperature dependence of the relaxation intensity suggest that the proton conduction is due to the Grotthuss mechanism with thermally excited H2O and NH3 molecules.

5.
J Phys Condens Matter ; 33(37)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34241596

RESUMO

We report the temperature dependent atomic dynamics in mercury investigated with quasi-elastic neutron scattering between 240 and 350 K. The self-diffusivity follows an Arrhenius behavior over the entire investigated temperature range, with an activation energy of 41.8 ± 1.4 meV. The standard deviation is in the order of 5%, significantly more precise than previously reported measurements in the literature. Similar to alkali metal melts, the self-diffusion coefficient close to the melting point can be predicted with an effective atom radius of 1.37 Å. This shows a dominant contribution from the repulsive part of the interatomic potential to the mass transport. We observed deviations from the Stokes/Sutherland-Einstein relation and indications of an increasing collective nature of the dynamics with decreasing temperature. Thus, a transport mechanism of uncorrelated binary collisions cannot fully describe the temperature dependence of the self-diffusion.

6.
Phys Rev Lett ; 126(8): 088102, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709739

RESUMO

The interaction between proteins and hydration water stabilizes protein structure and promotes functional dynamics, with water translational motions enabling protein flexibility. Engineered solvent-free protein-polymer hybrids have been shown to preserve protein structure, function, and dynamics. Here, we used neutron scattering, protein and polymer perdeuteration, and molecular dynamics simulations to explore how a polymer dynamically replaces water. Even though relaxation rates and vibrational properties are strongly modified in polymer coated compared to hydrated proteins, liquidlike polymer dynamics appear to plasticize the conjugated protein in a qualitatively similar way as do hydration-water translational motions.


Assuntos
Polímeros/química , Proteínas/química , Diaminas/química , Glicolatos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mioglobina/química , Difração de Nêutrons , Polietilenoglicóis/química , Conformação Proteica , Termodinâmica , Água/química
7.
Phys Chem Chem Phys ; 23(13): 7961-7973, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33459737

RESUMO

The diffusion of hydrogen adsorbed inside layered MoS2 crystals has been studied by means of quasi-elastic neutron scattering, neutron spin-echo spectroscopy, nuclear reaction analysis, and X-ray photoelectron spectroscopy. The neutron time-of-flight and neutron spin-echo measurements demonstrate fast diffusion of hydrogen molecules parallel to the basal planes of the two dimensional crystal planes. At room temperature and above, this intra-layer diffusion is of a similar speed to the surface diffusion that has been observed in earlier studies for hydrogen atoms on Pt surfaces. A significantly slower hydrogen diffusion was observed perpendicular to the basal planes using nuclear reaction analysis.

8.
Angew Chem Int Ed Engl ; 60(14): 7697-7702, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33238050

RESUMO

At solid/ice interfaces, a premelting layer is formed at temperatures below the melting point of bulk water. However, the structural and dynamic properties within the premelting layer have been a topic of intense debate. Herein, we determined the translational diffusion coefficient Dt of water in ice/clay nanocomposites serving as model systems for permafrost by quasi-elastic neutron scattering. Below the bulk melting point, a rapid decrease of Dt is found for charged hydrophilic vermiculite, uncharged hydrophilic kaolin, and more hydrophobic talc, reaching plateau values below -4 °C. At this temperature, Dt in the premelting layer is reduced up to a factor of two compared to supercooled bulk water. Adjacent to charged vermiculite the lowest water mobility was observed, followed by kaolin and the more hydrophobic talc. Results are explained by the intermolecular water interactions with different clay surfaces and interfacial segregation of the low-density liquid water (LDL) component.

9.
Sci Rep ; 10(1): 9080, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493958

RESUMO

Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4)2, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4)2 is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4)2 and ball milled, amorphous Mg(BH4)2 confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4)2 at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4] units, revealing a much larger fraction of activated [BH4] rotations in amorphous Mg(BH4)2. These findings suggest that the conduction process in amorphous Mg(BH4)2 is supported by stronger rotational mobility, which is proposed to be the so-called "paddle-wheel" mechanism.

10.
Soft Matter ; 16(8): 2005-2016, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32003764

RESUMO

The molecular dynamics of the triphenylene-based discotic liquid crystal HAT6 is investigated by broadband dielectric spectroscopy, advanced dynamical calorimetry and neutron scattering. Differential scanning calorimetry in combination with X-ray scattering reveals that HAT6 has a plastic crystalline phase at low temperatures, a hexagonally ordered liquid crystalline phase at higher temperatures and undergoes a clearing transition at even higher temperatures. The dielectric spectra show several relaxation processes: a localized γ-relaxation at lower temperatures and a so called α2-relaxation at higher temperatures. The relaxation rates of the α2-relaxation have a complex temperature dependence and bear similarities to a dynamic glass transition. The relaxation rates estimated by Hyper DSC, Fast Scanning calorimetry and AC Chip calorimetry have a different temperature dependence than the dielectric α2-relaxation and follow the VFT-behavior characteristic for glassy dynamics. Therefore, this process is called α1-relaxation. Its relaxation rates show a similarity with that of polyethylene. For this reason, the α1-relaxation is assigned to the dynamic glass transition of the alkyl chains in the intercolumnar space. Moreover, this process is not observed by dielectric spectroscopy, which supports its assignment. The α2-relaxation is assigned to small scale translatorial and/or small angle fluctuations of the cores. The neutron scattering data reveal two relaxation processes. The process observed at shorter relaxation times is assigned to the methyl group rotation. The second relaxation process at longer time scales agree in the temperature dependence of its relaxation rates with that of the dielectric γ-relaxation.

11.
J Phys Chem B ; 124(2): 324-335, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31710813

RESUMO

Molecular dynamics plays an important role for the biological function of proteins. For protein ligand interactions, changes of conformational entropy of protein and hydration layer are relevant for the binding process. Quasielastic neutron scattering (QENS) was used to investigate differences in protein dynamics and conformational entropy of ligand-bound and ligand-free streptavidin. Protein dynamics were probed both on the fast picosecond time scale using neutron time-of-flight spectroscopy and on the slower nanosecond time scale using high-resolution neutron backscattering spectroscopy. We found the internal equilibrium motions of streptavidin and the corresponding mean square displacements (MSDs) to be greatly reduced upon biotin binding. On the basis of the observed MSDs, we calculated the difference of conformational entropy ΔSconf of the protein component between ligand-bound and ligand-free streptavidin. The rather large negative ΔSconf value (-2 kJ mol-1 K-1 on the nanosecond time scale) obtained for the streptavidin tetramer seems to be counterintuitive, given the exceptionally high affinity of streptavidin-biotin binding. Literature data on the total entropy change ΔS observed upon biotin binding to streptavidin, which includes contributions from both the protein and the hydration water, suggest partial compensation of the unfavorable ΔSconf by a large positive entropy gain of the surrounding hydration layer and water molecules that are displaced during ligand binding.


Assuntos
Proteínas de Bactérias/metabolismo , Biotina/metabolismo , Estreptavidina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Biotina/química , Difusão , Entropia , Ligantes , Ligação Proteica , Conformação Proteica , Estreptavidina/química , Streptomyces/química , Termodinâmica , Água/química , Água/metabolismo
12.
J Phys Chem B ; 123(45): 9536-9545, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31550157

RESUMO

Orange carotenoid proteins (OCPs), which are protecting cyanobacterial light-harvesting antennae from photodamage, undergo a pronounced structural change upon light absorption. In addition, the active state is anticipated to boost a significantly higher molecular flexibility similar to a "molten globule" state. Here, we used quasielastic neutron scattering to directly characterize the vibrational and conformational molecular dynamics of OCP in its ground and active states, respectively, on the picosecond time scale. At a temperature of 100 K, we observe mainly (vibronic) inelastic features with peak energies at 5 and 6 meV (40 and 48 cm-1, respectively). At physiological temperatures, however, two (Lorentzian) quasielastic components represent localized protein motions, that is, stochastic structural fluctuations of protein side chains between various conformational substates of the protein. Global diffusion of OCP is not observed on the given time scale. The slower Lorentzian component is affected by illumination and can be well-characterized by a jump-diffusion model. While the jump diffusion constant D is (2.82 ± 0.01) × 10-5 cm2/s at 300 K in the ground state, it is increased by ∼20% to (3.48 ± 0.01) × 10-5 cm2/s in the active state, revealing a strong enhancement of molecular mobility. The increased mobility is also reflected in the average atomic mean square displacement ⟨u2⟩; we determine a ⟨u2⟩ of 1.47 ± 0.05 Å in the ground state, but 1.86 ± 0.05 Å in the active state (at 300 K). This effect is assigned to two factors: (i) the elongated structure of the active state with two widely separated protein domains is characterized by a larger number of surface residues with a concomitantly higher degree of motional freedom and (ii) a larger number of hydration water molecules bound at the surface of the protein. We thus conclude that the active state of the orange carotenoid protein displays an enhanced conformational dynamics. The higher degree of flexibility may provide additional channels for nonradiative decay so that harmful excess energy can be more efficiently converted to heat.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Mutação , Difração de Nêutrons , Maleabilidade , Conformação Proteica , Soluções/química , Synechocystis/química , Temperatura
13.
Phys Chem Chem Phys ; 21(2): 718-728, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30543230

RESUMO

Quasielastic neutron scattering was used to investigate the low energy transfer dynamics of the complex borohydrides Mg(BH4)2 in the α- and ß-modifications, LiBH4 in the low and high temperature crystal structure, and an 1 : 1 molar mixture of LiBH4 + α-Mg(BH4)2. All investigated compounds show a rich dynamic behaviour below an energy range of ΔE = 10 meV with the superposition of rotational dynamics of the constituent [BH4]- anions and low lying lattice modes. For Mg(BH4)2, the rotational diffusion of the [BH4] units was found to be much more activated in the metastable ß-polymorph compared to the α-phase, and the low lying lattice modes are even softer in the former crystal structure. In Mg(BH4)2, the structural phase transition is mainly governed by the lattice dynamics, while alkaline LiBH4 exhibits a transition of the [BH4] rotations around the phase transition temperature. Ball milled LiBH4 + α-Mg(BH4)2 remains a physical mixture of the parent compounds and each component retains its characteristic dynamic signature up to the melting temperature.

14.
Phys Chem Chem Phys ; 20(7): 5128-5139, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29392269

RESUMO

A characteristic property of unfolded and disordered proteins is their high molecular flexibility, which enables the exploration of a large conformational space. We present neutron scattering experiments on the dynamics of denatured and native folded bovine serum albumin (BSA) in solution. Global protein diffusion and internal macromolecular dynamics were measured using quasielastic neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond time- and Ångstrom length-scale. Internal protein dynamics were analysed in a first approach using stretched exponential functions. In denatured BSA predominantly slow heterogeneous dynamics dominates the observed macromolecular motions. Reduction of disulphide bridges in denatured BSA does not significantly alter the visible motions. In native folded BSA fast homogeneous dynamics and slow heterogeneous dynamics were observed. In an alternative data analysis approach, internal protein dynamics was interpreted using the analytical model of the overdamped Brownian oscillator, which allowed us to extract mean square displacements of protein internal dynamics and the fraction of hydrogen atoms participating in the observed motions. Our results demonstrate that denaturation modifies the physical nature of internal protein dynamics significantly as compared to the native folded structure.


Assuntos
Modelos Moleculares , Soroalbumina Bovina/química , Animais , Difusão , Cinética , Conformação Molecular , Movimento (Física) , Desnaturação Proteica , Dobramento de Proteína , Espalhamento de Radiação
15.
Phys Chem Chem Phys ; 20(3): 1355-1363, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29255828

RESUMO

Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering.

16.
Chem Phys Lipids ; 206: 28-42, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28579420

RESUMO

Neutron scattering is a powerful tool to study relaxation processes in biological membrane mimics in space and time. Combining different inelastic and quasielastic neutron scattering techniques, a large dynamic range can be covered: from atomic to mesoscopic lengths and from femto- to some hundreds of nanoseconds in time. This allows studies on e.g. the diffusion of lipids, the membrane undulation motions, the dispersion of sound waves in membranes as well as the mutual interactions of membrane constituents such as lipids, proteins, and additives. In particular, neutron scattering provides a quite direct experimental approach to the inter-atomic and inter-molecular potentials on length and time scales which are perfectly accessible by molecular dynamics (MD) simulations. Neutron scattering experiments may thus substantially support the further refinement of biomolecular force fields for MD simulations by supplying structural and dynamical information with high spatial and temporal resolution. In turn, MD simulations support the interpretation of neutron scattering data. The combination of both, neutron scattering experiments and MD simulations, yields an unprecedented insight into the molecular interactions governing the structure and dynamics of biological membranes. This review provides an overview of the molecular dynamics in biological membrane mimics as revealed by neutron scattering. It focuses on the latest findings such as the fundamental molecular mechanism of lateral lipid diffusion as well as the influence of additives and proteins on the short-time dynamics of lipids. Special emphasis is placed on the comparison of recent neutron scattering and MD simulation data with respect to molecular membrane dynamics on the pico- to nanosecond time scale.


Assuntos
Membrana Celular/química , Membranas Artificiais , Difração de Nêutrons/métodos , Lipídeos de Membrana/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular
17.
J Phys Chem B ; 120(20): 4679-88, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27187897

RESUMO

The solvent dynamics of concentrated solutions of poly(N-isopropylacrylamide) (PNIPAM, 25 wt %) in water/methanol mixtures (85:15 v/v) are measured with the aim of shedding light onto the cononsolvency effect. Quasi-elastic neutron scattering (QENS) with contrast variation has been carried out at temperatures below and above the cloud point by using in the first set of experiments the mixture H2O:d-MeOD (d-MeOD denotes fully deuterated methanol) as a solvent and in the second set of experiments the mixture D2O:MeOH (MeOH denotes methanol). As a reference, bulk H2O, bulk MeOH and the mixtures H2O:d-MeOD and D2O:MeOH (both 85:15 v/v) have been investigated as well. In the PNIPAM solution in H2O:d-MeOD, two water populations are identified, namely strongly and less strongly arrested water. At the cloud point, the former is partially released from PNIPAM. The diffusion coefficient of the latter one is similar to the one in the water/methanol mixture, and its residence time decreases at the cloud point. The PNIPAM solution in D2O:MeOH reveals similar dynamics to the one in H2O:d-MeOD which may reflect that the dynamics of MeOH near the PNIPAM chain is similar to the one of H2O. The similarity may, however, partially be due to H/D exchange between D2O and MeOH. In both PNIPAM solutions, the mean-square displacement of the PNIPAM chain decreases gradually above the cloud point.

18.
Phys Chem Chem Phys ; 18(21): 14323-32, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27166261

RESUMO

A quasielastic neutron scattering study on ß-Mg(BH4)2 has been performed to investigate the hydrogen dynamics on the picosecond time-scale. Both vibrational and rotational motions of the [BH4](-) tetrahedra contribute to the signal at low energy transfers. A comprehensive analysis of the elastic and quasielastic incoherent structure factors allowed the separation of different parts. Below 200 K, vibrations and rotations (around the C2 or C3 symmetry axis of the [BH4](-) tetrahedra) are well separated. Above that temperature, a transition is observed in the vibrational part, and the spectral weight is shifted towards the quasielastic region. The dynamic transition is not accompanied by any structural phase change but we suggest that it is correlated with the anomalous thermal expansion that has been reported for ß-Mg(BH4)2 [Filinchuk, et al., Chem. Mater., 2009, 21, 925].

19.
Biophys J ; 110(5): 1064-74, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26958884

RESUMO

We used neutron-scattering experiments to probe the conformational dynamics of the light, oxygen, voltage (LOV) photoreceptor PpSB1-LOV from Pseudomonas putida in both the dark and light states. Global protein diffusion and internal macromolecular dynamics were measured using incoherent neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond timescales. Global protein diffusion of PpSB1-LOV is not influenced by photoactivation. Observation-time-dependent global diffusion coefficients were found, which converge on the nanosecond timescale toward diffusion coefficients determined by dynamic light scattering. Mean-square displacements of localized internal motions and effective force constants, , describing the resilience of the proteins were determined on the respective timescales. Photoactivation significantly modifies the flexibility and the resilience of PpSB1-LOV. On the fast, picosecond timescale, small changes in the mean-square displacement and are observed, which are enhanced on the slower, nanosecond timescale. Photoactivation results in a slightly larger resilience of the photoreceptor on the fast, picosecond timescale, whereas in the nanosecond range, a significantly less resilient structure of the light-state protein is observed. For a residue-resolved interpretation of the experimental neutron-scattering data, we analyzed molecular dynamics simulations of the PpSB1-LOV X-ray structure. Based on these data, it is tempting to speculate that light-induced changes in the protein result in altered side-chain mobility mostly for residues on the protruding Jα helix and on the LOV-LOV dimer interface. Our results provide strong experimental evidence that side-chain dynamics play a crucial role in photoactivation and signaling of PpSB1-LOV via modulation of conformational entropy.


Assuntos
Luz , Fotorreceptores Microbianos/química , Proteínas de Bactérias/química , Óxido de Deutério , Difusão , Elasticidade , Entropia , Simulação de Dinâmica Molecular , Nêutrons , Pseudomonas putida/metabolismo , Espectrofotometria Ultravioleta , Fatores de Tempo
20.
Soft Matter ; 12(5): 1444-51, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646730

RESUMO

The peptide amyloid-ß (Aß) interacts with membranes of cells in the human brain and is associated with Alzheimer's disease (AD). The intercalation of Aß in membranes alters membrane properties, including the structure and lipid dynamics. Any change in the membrane lipid dynamics will affect essential membrane processes, such as energy conversion, signal transduction and amyloid precursor protein (APP) processing, and may result in the observed neurotoxicity associated with the disease. The influence of this peptide on membrane dynamics was studied with quasi-elastic neutron scattering, a technique which allows a wide range of observation times from picoseconds to nanoseconds, over nanometer length scales. The effect of the membrane integral neurotoxic peptide amyloid-ß, residues 22-40, on the in- and out-of-plane lipid dynamics was observed in an oriented DMPC/DMPS bilayer at 15 °C, in its gel phase, and at 30 °C, near the phase transition temperature of the lipids. Near the phase-transition temperature, a 1.5 mol% of peptide causes up to a twofold decrease in the lipid diffusion coefficients. In the gel-phase, this effect is reversed, with amyloid-ß(22-40) increasing the lipid diffusion coefficients. The observed changes in lipid diffusion are relevant to protein-protein interactions, which are strongly influenced by the diffusion of membrane components. The effect of the amyloid-ß peptide fragment on the diffusion of membrane lipids will provide insight into the membrane's role in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Bicamadas Lipídicas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Difusão , Dimiristoilfosfatidilcolina/química , Humanos , Bicamadas Lipídicas/química , Domínios e Motivos de Interação entre Proteínas , Unitiol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...