Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(3): 401-405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317008

RESUMO

Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Nucleotídeos , Análise de Sequência de RNA , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase
2.
Mol Ecol ; 32(24): 6796-6808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888909

RESUMO

The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.


Assuntos
Ouriços-do-Mar , Água do Mar , Humanos , Animais , Masculino , Água do Mar/química , Concentração de Íons de Hidrogênio , Ouriços-do-Mar/genética , Perfilação da Expressão Gênica , Larva/fisiologia , Transcriptoma/genética , Dióxido de Carbono/química , Oceanos e Mares
3.
Methods Enzymol ; 690: 541-574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37858540

RESUMO

Mass cytometry provides highly multiparametric data at a single cell level, coupling the specificity and sensitivity of time-of-flight mass spectrometry with the single-cell throughput of flow cytometry. It offers great value in interrogating the potentially heterogenous impact that a drug may have on a biological system, allowing an investigator to capture not just changes in cell behavior, but how these changes may differ between cell subtypes. In this chapter, we review the technical details of the platform as well as its limitations, before describing our approach to planning and running a mass cytometry experiment. A series of method modules, spanning the staining process through to data cleaning, are described that are then combined to create three separate experiments. The first experiment illustrates a core process in mass cytometry: the validation and titration of a metal-conjugated antibody reporter. The second experiment explores the impact of a kinase inhibitor on cell cycle and apoptosis pathways of a human myeloma cell line. And the third experiment exploits the multiparametric capability of mass cytometry, by exploring the differential expression changes in a transcription factor upon drug treatment across the cellular compartments of a peripheral blood mononuclear cell sample.


Assuntos
Leucócitos Mononucleares , Mieloma Múltiplo , Humanos , Linhagem Celular Tumoral , Citometria de Fluxo/métodos , Descoberta de Drogas
4.
Sci Transl Med ; 15(716): eadh4181, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37792958

RESUMO

Clonal evolution drives cancer progression and therapeutic resistance. Recent studies have revealed divergent longitudinal trajectories in gliomas, but early molecular features steering posttreatment cancer evolution remain unclear. Here, we collected sequencing and clinical data of initial-recurrent tumor pairs from 544 adult diffuse gliomas and performed multivariate analysis to identify early molecular predictors of tumor evolution in three diffuse glioma subtypes. We found that CDKN2A deletion at initial diagnosis preceded tumor necrosis and microvascular proliferation that occur at later stages of IDH-mutant glioma. Ki67 expression at diagnosis was positively correlated with acquiring hypermutation at recurrence in the IDH-wild-type glioma. In all glioma subtypes, MYC gain or MYC-target activation at diagnosis was associated with treatment-induced hypermutation at recurrence. To predict glioma evolution, we constructed CELLO2 (Cancer EvoLution for LOngitudinal data version 2), a machine learning model integrating features at diagnosis to forecast hypermutation and progression after treatment. CELLO2 successfully stratified patients into subgroups with distinct prognoses and identified a high-risk patient group featured by MYC gain with worse post-progression survival, from the low-grade IDH-mutant-noncodel subtype. We then performed chronic temozolomide-induction experiments in glioma cell lines and isogenic patient-derived gliomaspheres and demonstrated that MYC drives temozolomide resistance by promoting hypermutation. Mechanistically, we demonstrated that, by binding to open chromatin and transcriptionally active genomic regions, c-MYC increases the vulnerability of key mismatch repair genes to treatment-induced mutagenesis, thus triggering hypermutation. This study reveals early predictors of cancer evolution under therapy and provides a resource for precision oncology targeting cancer dynamics in diffuse gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Neoplasias Encefálicas/terapia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Mutação/genética , Medicina de Precisão , Recidiva Local de Neoplasia/tratamento farmacológico , Glioma/tratamento farmacológico
5.
Sci Adv ; 9(1): eabp8901, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598983

RESUMO

Single-cell multi-omics can provide a unique perspective on tumor cellular heterogeneity. Most previous single-cell whole-genome RNA sequencing (scWGS-RNA-seq) methods demonstrate utility with intact cells from fresh samples. Among them, many are not applicable to frozen samples that cannot produce intact single-cell suspensions. We have developed scONE-seq, a versatile scWGS-RNA-seq method that amplifies single-cell DNA and RNA without separating them from each other and hence is compatible with frozen biobanked samples. We benchmarked scONE-seq against existing methods using fresh and frozen samples to demonstrate its performance in various aspects. We identified a unique transcriptionally normal-like tumor clone by analyzing a 2-year frozen astrocytoma sample, demonstrating that performing single-cell multi-omics interrogation on biobanked tissue by scONE-seq could enable previously unidentified discoveries in tumor biology.


Assuntos
Multiômica , Neoplasias , Humanos , Neoplasias/genética , RNA-Seq/métodos , Genótipo , Fenótipo
6.
PeerJ ; 9: e10717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520469

RESUMO

A decade since its invention, single-cell RNA sequencing (scRNA-seq) has become a mainstay technology for profiling transcriptional heterogeneity in individual cells. Yet, most existing scRNA-seq methods capture only polyadenylated mRNA to avoid the cost of sequencing non-messenger transcripts, such as ribosomal RNA (rRNA), that are usually not of-interest. Hence, there are not very many protocols that enable single-cell analysis of total RNA. We adapted a method called DASH (Depletion of Abundant Sequences by Hybridisation) to make it suitable for depleting rRNA sequences from single-cell total RNA-seq libraries. Our analyses show that our single-cell DASH (scDASH) method can effectively deplete rRNAs from sequencing libraries with minimal off-target non-specificity. Importantly, as a result of depleting the rRNA, the rest of the transcriptome is significantly enriched for detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA