Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36904384

RESUMO

Sorption of pure CO2 and CH4 and CO2/CH4 binary gas mixtures in amorphous glassy Poly(2,6-dimethyl-1,4-phenylene) oxide (PPO) at 35 °C up to 1000 Torr was investigated. Sorption experiments were carried out using an approach that combines barometry with FTIR spectroscopy in the transmission mode to quantify the sorption of pure and mixed gases in polymers. The pressure range was chosen to prevent any variation of the glassy polymer density. The solubility within the polymer of the CO2 present in the gaseous binary mixtures was practically coincident with the solubility of pure gaseous CO2, up to a total pressure of the gaseous mixtures equal to 1000 Torr and for CO2 mole fractions of ~0.5 mol mol-1 and ~0.3 mol mol-1. The Non-Equilibrium Thermodynamics for Glassy Polymers (NET-GP) modelling approach has been applied to the Non-Random Hydrogen Bonding (NRHB) lattice fluid model to fit the solubility data of pure gases. We have assumed here that no specific interactions were occurring between the matrix and the absorbed gas. The same thermodynamic approach has been then used to predict the solubility of CO2/CH4 mixed gases in PPO, resulting in a deviation lower than 9.5% from the experimental results for CO2 solubility.

2.
Philos Trans A Math Phys Eng Sci ; 381(2240): 20210216, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36403634

RESUMO

Polymer matrices, when placed in contact with a fluid phase made of low molecular weight compounds, undergo a depression of their glass transition temperature (Tg) determined by the absorption of these compounds and the associated plasticization phenomena. Frequently, this effect is coupled with the mechanical action of the compressive stress exerted by the pressure of the fluid phase that, in contrast, promotes an increase in the Tg. This issue is relevant for technological and structural applications of composites with high-performance glassy polymer matrices, due to their significant impact on mechanical properties. We propose an approach to model and predict rubbery-glassy states maps of polymer-penetrant mixtures as a function of pressure and temperature based on the Gibbs-Di Marzio criterion. This criterion establishes that a 'thermodynamic' glass transition does occur when the configurational entropy of the system vanishes. Although questioned and criticized, this criterion constitutes a good practical approach to analyse changes of Tg and, in some way, reflects the idea of an 'entropy catastrophe' occurring at the glass transition. Several polymer-penetrant systems have been analysed modelling configurational entropy by means of the Non-Random Hydrogen Bond lattice fluid theory, able to cope with possible non-random mixing and occurrence of strong interactions. This article is part of the theme issue 'Ageing and durability of composite materials'.

3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809376

RESUMO

The diffusion process of water molecules within a polyetherimide (PEI) glassy matrix has been analyzed by combining the experimental analysis of water sorption kinetics performed by FTIR spectroscopy with theoretical information gathered from Molecular Dynamics simulations and with the expression of water chemical potential provided by a non-equilibrium lattice fluid model able to describe the thermodynamics of glassy polymers. This approach allowed us to construct a convincing description of the diffusion mechanism of water in PEI providing molecular details of the process related to the effects of the cross- and self-hydrogen bonding established in the system on the dynamics of water mass transport.


Assuntos
Transporte Biológico/genética , Polímeros/química , Termodinâmica , Água/química , Difusão , Ligação de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Polímeros/metabolismo
4.
J Phys Chem B ; 122(11): 3015-3022, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29499111

RESUMO

Atactic polystyrene, as reported in a recent contribution by our group, displays a marked change in glass transition when exposed to toluene vapor due to plasticization associated with vapor sorption within the polymer. The dependence of the glass transition temperature of the polymer-penetrant mixture on the pressure of toluene vapor is characterized by the so-called "retrograde vitrification" phenomenon, in that, at a constant pressure, a rubber to glass transition occurs by increasing the temperature. In this contribution, we have used a theoretical approach, based on the nonrandom lattice fluid thermodynamic model for the polymer-toluene mixture, to predict the state of this system, i.e., rubbery or glassy, as a function of fluid pressure and system temperature. The experimentally detectable glass transition is assumed to be a kinetically affected evidence of an underlying II order thermodynamic transition of the polymer mixture. On the basis of this hypothesis, the Gibbs-Di Marzio criterion, stating that equilibrium configurational entropy is zeroed at the glass transition, has been applied to locate the transition. The working set of equations consists of the expression of configurational entropy obtained from the adopted lattice fluid model equated to zero, coupled with the equation expressing the phase equilibrium between the polymer phase and the pure toluene vapor phase in contact and with the equations of state for the two phases. Theoretical predictions are in good qualitative and quantitative agreement with the experimental results previously obtained gravimetrically performing "dynamic" sorption experiments, which represent a neat example of the occurrence of so-called "type IV" glass transition temperature vs pressure behavior. The peculiar retrograde vitrification phenomenon and the glass transition temperature vs pressure envelope determined experimentally are well described by the proposed theoretical approach.

5.
J Phys Chem B ; 121(42): 9969-9981, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-28985470

RESUMO

Exposing a glassy polymer to a fluid phase (in gaseous or liquid state) containing a low molecular weight compound results in the sorption of the latter within the polymer, inducing, among other effects, the plasticization of the material which also promotes a change in the glass transition temperature. The amount of sorbed penetrant is often related in a complex fashion to the temperature and pressure of the fluid, thus determining that the locus of glass transition, when represented in pressure-temperature coordinates, may display as well rather complex patterns. This is an issue of particular importance in several applications of glassy polymers. In particular, we investigated the behavior of polystyrene in contact with toluene vapor by performing several modes of dynamic sorption experiments, in which the rate of change of the temperature of the system and/or of the pressure of the vapor phase are controlled with high accuracy, with the aim of creating a map of rubbery and glassy states of the polymer as a function of temperature and pressure of the toluene vapor. Isothermal tests were performed by changing the pressure at a controlled rate, isobaric tests were performed by changing the temperature at a controlled rate, and isoactivity tests were performed by concurrently changing, in a proper way, both temperature and pressure. A relevant feature resulting from these experiments is the presence of a discontinuity in the slope of the mass of toluene sorbed within polystyrene reported as a function of temperature and/or pressure. This discontinuity has been interpreted as the indication of the occurrence of a glass transition. The elaboration of the experimental results allowed identification of the pressure/temperature conditions at which rubbery or glassy states of the polymer mixture are established. Quite interestingly, the system displays the so- called "retrograde vitrification" phenomenon, which consists of the occurrence of a rubbery-to-glassy state transition as the temperature increases at a fixed pressure. The whole set of results has been successfully interpreted on the basis of thermodynamics of II order transitions accounting for the fact that experimental evidence of such transitions is significantly affected by the kinetics of polymer relaxation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...