Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Cancer ; 5(4): zcad057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058548

RESUMO

The therapeutic efficacy of cisplatin and oxaliplatin depends on the balance between the DNA damage induction and the DNA damage response of tumor cells. Based on clinical evidence, oxaliplatin is administered to cisplatin-unresponsive cancers, but the underlying molecular causes for this tumor specificity are not clear. Hence, stratification of patients based on DNA repair profiling is not sufficiently utilized for treatment selection. Using a combination of genetic, transcriptomics and imaging approaches, we identified factors that promote global genome nucleotide excision repair (GG-NER) of DNA-platinum adducts induced by oxaliplatin, but not by cisplatin. We show that oxaliplatin-DNA lesions are a poor substrate for GG-NER initiating factor XPC and that DDB2 and HMGA2 are required for efficient binding of XPC to oxaliplatin lesions and subsequent GG-NER initiation. Loss of DDB2 and HMGA2 therefore leads to hypersensitivity to oxaliplatin but not to cisplatin. As a result, low DDB2 levels in different colon cancer cells are associated with GG-NER deficiency and oxaliplatin hypersensitivity. Finally, we show that colon cancer patients with low DDB2 levels have a better prognosis after oxaliplatin treatment than patients with high DDB2 expression. We therefore propose that DDB2 is a promising predictive marker of oxaliplatin treatment efficiency in colon cancer.

2.
Sci Rep ; 13(1): 13964, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633982

RESUMO

Obesity is a modifiable risk factor in cancer development, especially for gastrointestinal cancer. While the etiology of colorectal cancer is well characterized by the adenoma-carcinoma sequence, it remains unclear how obesity influences colorectal cancer development. Dietary components of a high fat diet along with obesity have been shown to modulate the cancer risk by perturbing the homeostasis of intestinal stem cells, yet how adiposity impacts the development of genomic instability has not been studied. Mutational signatures are a powerful way to understand how a complex biological response impacts genomic stability. We utilized a mouse model of diet-induced obesity to study the mutational landscape of intestinal crypt cells after a 48-week exposure to an experimental high fat diet in vivo. By clonally enriching single crypt derived cells in organoid culture and obtaining whole genome sequences, we analyzed and compared the mutational landscape of intestinal epithelial cells from normal diet and high fat diet mice. Single nucleotide substitution signatures and indel signatures present in our cohort are found equally active in both diet groups and reflect biological processes of normal aging, cellular replication, and oxidative stress induced during organoid culturing. Thus, we demonstrate that in the absence of activating mutations or chemical exposure, high fat diet alone is not sufficient to increase genomic instability.


Assuntos
Neoplasias Colorretais , Dieta Hiperlipídica , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Mutação , Instabilidade Genômica , Obesidade/genética , Neoplasias Colorretais/genética
3.
Mol Syst Biol ; 19(7): e11267, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259925

RESUMO

While cellular metabolism impacts the DNA damage response, a systematic understanding of the metabolic requirements that are crucial for DNA damage repair has yet to be achieved. Here, we investigate the metabolic enzymes and processes that are essential for the resolution of DNA damage. By integrating functional genomics with chromatin proteomics and metabolomics, we provide a detailed description of the interplay between cellular metabolism and the DNA damage response. Further analysis identified that Peroxiredoxin 1, PRDX1, contributes to the DNA damage repair. During the DNA damage response, PRDX1 translocates to the nucleus where it reduces DNA damage-induced nuclear reactive oxygen species. Moreover, PRDX1 loss lowers aspartate availability, which is required for the DNA damage-induced upregulation of de novo nucleotide synthesis. In the absence of PRDX1, cells accumulate replication stress and DNA damage, leading to proliferation defects that are exacerbated in the presence of etoposide, thus revealing a role for PRDX1 as a DNA damage surveillance factor.


Assuntos
Ácido Aspártico , Peroxirredoxinas , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Dano ao DNA , Estresse Oxidativo/genética , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
4.
EMBO Mol Med ; 15(4): e17453, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36929572

RESUMO

Personalised oncology is at the forefront of cancer research. The goal of personalised oncology is to selectively kill cancer cells while minimising side effects on normal tissue. This can be achieved by identifying and targeting cancer vulnerabilities that distinguish it from normal cells. Many cancers are deficient in high-fidelity DNA repair pathways that maintain genomic stability, such as homologous recombination (HR). Such cancers are highly sensitive to targeted therapies that induce DNA damage or inhibit DNA repair pathways. A notable example and a poster child of personalised oncology are PARP1/2 inhibitors (PARPi) that selectively kill HR-deficient (HRD) cancer cells by preventing repair of DNA gaps or single-strand breaks (SSBs) (Slade, 2020). Inhibitors of cell cycle checkpoints such as CHK1 and WEE1 can also eliminate HRD cancers by pushing cancer cells through the cell cycle despite unrepaired DNA damage and causing death by mitotic catastrophe (Groelly et al, 2022). PARPi have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancer but other cancer types with an HRD signature (HRDness) may also respond to PARPi treatment. Planas-Paz et al (2023) now show that many sarcomas show HRDness and respond to PARP1/2 and WEE1 inhibitors, thus offering a new personalised oncology approach for this treatment-refractory cancer.


Assuntos
Reparo de DNA por Recombinação , Sarcoma , Masculino , Criança , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Recombinação Homóloga , Dano ao DNA , Sarcoma/genética , Sarcoma/tratamento farmacológico
5.
Cell Rep ; 41(9): 111716, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36400033

RESUMO

Polymerase theta (POLθ) is an error-prone DNA polymerase whose loss is synthetically lethal in cancer cells bearing breast cancer susceptibility proteins 1 and 2 (BRCA1/2) mutations. To investigate the basis of this genetic interaction, we utilized a small-molecule inhibitor targeting the POLθ polymerase domain. We found that POLθ processes single-stranded DNA (ssDNA) gaps that emerge in the absence of BRCA1, thus promoting unperturbed replication fork progression and survival of BRCA1 mutant cells. A genome-scale CRISPR-Cas9 knockout screen uncovered suppressors of the functional interaction between POLθ and BRCA1, including NBN, a component of the MRN complex, and cell-cycle regulators such as CDK6. While the MRN complex nucleolytically processes ssDNA gaps, CDK6 promotes cell-cycle progression, thereby exacerbating replication stress, a feature of BRCA1-deficient cells that lack POLθ activity. Thus, ssDNA gap formation, modulated by cell-cycle regulators and MRN complex activity, underlies the synthetic lethality between POLθ and BRCA1, an important insight for clinical trials with POLθ inhibitors.


Assuntos
DNA de Cadeia Simples , Nucleotidiltransferases , DNA de Cadeia Simples/genética , Núcleo Celular , Mutação , Divisão Celular
6.
Front Oncol ; 12: 874201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719993

RESUMO

Cisplatin induces DNA crosslinks that are highly cytotoxic. Hence, platinum complexes are frequently used in the treatment of a broad range of cancers. Efficiency of cisplatin treatment is limited by the tumor-specific DNA damage response to the generated lesions. We reasoned that better tools to investigate the repair of DNA crosslinks induced by cisplatin would therefore be highly useful in addressing drug limitations. Here, we synthesized a series of cisplatin derivatives that are compatible with click chemistry, thus allowing visualization and isolation of DNA-platinum crosslinks from cells to study cellular responses. We prioritized one alkyne and one azide Pt(II) derivative, Pt-alkyne-53 and Pt-azide-64, for further biological characterization. We demonstrate that both compounds bind DNA and generate DNA lesions and that the viability of treated cells depends on the active DNA repair machinery. We also show that the compounds are clickable with both a fluorescent probe as well as biotin, thus they can be visualized in cells, and their ability to induce crosslinks in genomic DNA can be quantified. Finally, we show that Pt-alkyne-53 can be used to identify DNA repair proteins that bind within its proximity to facilitate its removal from DNA. The compounds we report here can be used as valuable experimental tools to investigate the DNA damage response to platinum complexes and hence might shed light on mechanisms of chemoresistance.

7.
Mol Oncol ; 16(21): 3778-3791, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35708734

RESUMO

The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Neoplasias/genética , Mutação , Testes Genéticos , Dano ao DNA
8.
Bioinformatics ; 38(6): 1692-1699, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34935929

RESUMO

MOTIVATION: High-content imaging screens provide a cost-effective and scalable way to assess cell states across diverse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available for the high-performance Julia programming language. RESULTS: Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative morphological profiles in Julia. The package contains all the necessary data structures to curate morphological measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and permutation tests enable quantification of the significance of the observed changes despite the high fraction of outliers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging screen, in which the morphological profiles prove to be informative about the compounds' mechanisms of action and can be conveniently integrated with the network localization of molecular targets. AVAILABILITY AND IMPLEMENTATION: The Julia package is available on GitHub: https://github.com/menchelab/BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.figshare.14784678.v2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Linguagens de Programação , Software , Microscopia
9.
Cell Syst ; 12(10): 953-955, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34672958

RESUMO

Mutational signatures are the outcomes of mutagenic processes that occur prior to, and during, tumorigenesis as a result of DNA damage, DNA repair, and DNA replication. In this issue of Cell Systems, Wojtowicz et al. introduce a new computational model aimed at deconstructing the mutational processes that shape cancer genomes.


Assuntos
Neoplasias , Dano ao DNA/genética , Reparo do DNA/genética , Genoma Humano/genética , Humanos , Mutação/genética , Neoplasias/genética
10.
Front Genet ; 12: 728520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539755

RESUMO

The use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 has moved from bench to bedside in less than 10years, realising the vision of correcting disease through genome editing. The accuracy and safety of this approach relies on the precise control of DNA damage and repair processes to achieve the desired editing outcomes. Strategies for modulating pathway choice for repairing CRISPR-mediated DNA double-strand breaks (DSBs) have advanced the genome editing field. However, the promise of correcting genetic diseases with CRISPR-Cas9 based therapies is restrained by a lack of insight into controlling desired editing outcomes in cells of different tissue origin. Here, we review recent developments and urge for a greater understanding of tissue specific DNA repair processes of CRISPR-induced DNA breaks. We propose that integrated mapping of tissue specific DNA repair processes will fundamentally empower the implementation of precise and safe genome editing therapies for a larger variety of diseases.

11.
Trends Genet ; 37(11): 958-962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34392967

RESUMO

CRISPR-Cas9-mediated genome editing holds great promise for the correction of pathogenic variants in humans. However, its therapeutic implementation is hampered due to unwanted editing outcomes. A better understanding of cell type- and tissue-specific DNA repair processes will ultimately enable precise control of editing outcomes for safer and effective therapies.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Humanos , Especificidade de Órgãos/genética
12.
Blood Cancer J ; 11(7): 137, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34333533

RESUMO

Mutations of calreticulin (CALR) are the second most prevalent driver mutations in essential thrombocythemia and primary myelofibrosis. To identify potential targeted therapies for CALR mutated myeloproliferative neoplasms, we searched for small molecules that selectively inhibit the growth of CALR mutated cells using high-throughput drug screening. We investigated 89 172 compounds using isogenic cell lines carrying CALR mutations and identified synthetic lethality with compounds targeting the ATR-CHK1 pathway. The selective inhibitory effect of these compounds was validated in a co-culture assay of CALR mutated and wild-type cells. Of the tested compounds, CHK1 inhibitors potently depleted CALR mutated cells, allowing wild-type cell dominance in the co-culture over time. Neither CALR deficient cells nor JAK2V617F mutated cells showed hypersensitivity to ATR-CHK1 inhibition, thus suggesting specificity for the oncogenic activation by the mutant CALR. CHK1 inhibitors induced replication stress in CALR mutated cells revealed by elevated pan-nuclear staining for γH2AX and hyperphosphorylation of RPA2. This was accompanied by S-phase cell cycle arrest due to incomplete DNA replication. Transcriptomic and phosphoproteomic analyses revealed a replication stress signature caused by oncogenic CALR, suggesting an intrinsic vulnerability to CHK1 perturbation. This study reveals the ATR-CHK1 pathway as a potential therapeutic target in CALR mutated hematopoietic cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Calreticulina/genética , Quinase 1 do Ponto de Checagem/metabolismo , Descoberta de Drogas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Células-Tronco Hematopoéticas/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Mutação/efeitos dos fármacos , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Trombocitemia Essencial/tratamento farmacológico , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo
13.
Mol Cell Biol ; 41(9): e0030321, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34228493

RESUMO

Germline mutations in the mismatch repair (MMR) genes MSH2, MSH6, MLH1, and PMS2 are linked to cancer of the colon and other organs, characterized by microsatellite instability and a large increase in mutation frequency. Unexpectedly, mutations in EXO1, encoding the only exonuclease genetically implicated in MMR, are not linked to familial cancer and cause a substantially weaker mutator phenotype. This difference could be explained if eukaryotic cells possessed additional exonucleases redundant with EXO1. Analysis of the MLH1 interactome identified FANCD2-associated nuclease 1 (FAN1), a novel enzyme with biochemical properties resembling EXO1. We now show that FAN1 efficiently substitutes for EXO1 in MMR assays and that this functional complementation is modulated by its interaction with MLH1. FAN1 also contributes to MMR in vivo; cells lacking both EXO1 and FAN1 have an MMR defect and display resistance to N-methyl-N-nitrosourea (MNU) and 6-thioguanine (TG). Moreover, FAN1 loss amplifies the mutational profile of EXO1-deficient cells, suggesting that the two nucleases act redundantly in the same antimutagenic pathway. However, the increased drug resistance and mutator phenotype of FAN1/EXO1-deficient cells are less prominent than those seen in cells lacking MSH6 or MLH1. Eukaryotic cells thus apparently possess additional mechanisms that compensate for the loss of EXO1.


Assuntos
Proteínas Aviárias/metabolismo , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Galinhas , Endodesoxirribonucleases/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/deficiência , Exodesoxirribonucleases/genética , Guanosina/análogos & derivados , Células HEK293 , Humanos , Metilnitronitrosoguanidina , Enzimas Multifuncionais/química , Mutação/genética , Tionucleosídeos
14.
Trends Cancer ; 7(2): 98-111, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33109489

RESUMO

Targeted cancer therapies represent a milestone towards personalized treatment as they function via inhibition of cancer-specific alterations. Polymerase θ (POLQ), an error-prone translesion polymerase, also involved in DNA double-strand break (DSB) repair, is often upregulated in cancer. POLQ is synthetic lethal with various DNA repair genes, including known cancer drivers such as BRCA1/2, making it essential in homologous recombination-deficient cancers. Thus, POLQ represents a promising target in cancer therapy and efforts for the development of POLQ inhibitors are actively underway with first clinical trials due to start in 2021. This review summarizes the journey of POLQ from a backup DNA repair enzyme to a promising therapeutic target for cancer treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Desenvolvimento de Medicamentos/tendências , Neoplasias/tratamento farmacológico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias/genética , Neoplasias/mortalidade , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Prognóstico , Mutações Sintéticas Letais/efeitos dos fármacos , DNA Polimerase teta
15.
Cancers (Basel) ; 12(8)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722390

RESUMO

Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.

16.
Haematologica ; 105(2): 435-447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31123029

RESUMO

Recurrent gain-of-function mutations in the transcription factors STAT5A and much more in STAT5B were found in hematopoietic malignancies with the highest proportion in mature T- and natural killer-cell neoplasms (peripheral T-cell lymphoma, PTCL). No targeted therapy exists for these heterogeneous and often aggressive diseases. Given the shortage of models for PTCL, we mimicked graded STAT5A or STAT5B activity by expressing hyperactive Stat5a or STAT5B variants at low or high levels in the hematopoietic system of transgenic mice. Only mice with high activity levels developed a lethal disease resembling human PTCL. Neoplasia displayed massive expansion of CD8+ T cells and destructive organ infiltration. T cells were cytokine-hypersensitive with activated memory CD8+ T-lymphocyte characteristics. Histopathology and mRNA expression profiles revealed close correlation with distinct subtypes of PTCL. Pronounced STAT5 expression and activity in samples from patients with different subsets underline the relevance of JAK/STAT as a therapeutic target. JAK inhibitors or a selective STAT5 SH2 domain inhibitor induced cell death and ruxolitinib blocked T-cell neoplasia in vivo We conclude that enhanced STAT5A or STAT5B action both drive PTCL development, defining both STAT5 molecules as targets for therapeutic intervention.


Assuntos
Leucemia , Linfoma de Células T Periférico , Animais , Linfócitos T CD8-Positivos/metabolismo , Citocinas , Humanos , Linfoma de Células T Periférico/genética , Camundongos , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor
17.
Sci Rep ; 9(1): 15751, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673055

RESUMO

The mutagenic repair of Cas9 generated breaks is thought to predominantly rely on non-homologous end-joining (NHEJ), leading to insertions and deletions within DNA that culminate in gene knock-out (KO). In this study, by taking focused as well as genome-wide approaches, we show that this pathway is dispensable for the repair of such lesions. Genetic ablation of NHEJ is fully compensated for by alternative end joining (alt-EJ), in a POLQ-dependent manner, resulting in a distinct repair signature with larger deletions that may be exploited for large-scale genome editing. Moreover, we show that cells deficient for both NHEJ and alt-EJ were still able to repair CRISPR-mediated DNA double-strand breaks, highlighting how little is yet known about the mechanisms of CRISPR-based genome editing.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP90/genética , Humanos , RNA Guia de Cinetoplastídeos/metabolismo , Ubiquitina-Proteína Ligases/genética
19.
Cancer Res ; 79(22): 5693-5698, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31387919

RESUMO

Kinases are signaling enzymes that regulate diverse cellular processes. As such, they are frequently mutated in cancer and therefore represent important targets for drug discovery. However, until recently, systematic approaches to identify vulnerabilities and resistances of kinases to DNA-damaging chemotherapeutics have not been possible, partially due to the lack of appropriate technologies. With the advent of CRISPR-Cas9, a comprehensive study has investigated the cellular survival of more than 300 kinase-deficient isogenic cell lines to a diverse panel of DNA-damaging agents, enriched for chemotherapeutics. Here, we discuss how this approach has allowed for the rational development of combination therapies that are aimed at using synthetic lethal interactions between kinase deficiencies and DNA-damaging agents that are used as chemotherapeutics.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fosfotransferases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Neoplasias/metabolismo
20.
J Clin Invest ; 129(10): 4194-4206, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31449058

RESUMO

Polymerase δ is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase δ complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase δ complex has emerged as a central element in genome maintenance. The essentiality of polymerase δ has constrained the generation of polymerase δ-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase δ complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase δ. The mutations affected the stability and interactions within the polymerase δ complex or its intrinsic polymerase activity. We believe our discovery of human polymerase δ deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.


Assuntos
DNA Polimerase III/deficiência , DNA Polimerase III/genética , Mutação em Linhagem Germinativa , Síndromes de Imunodeficiência/enzimologia , Síndromes de Imunodeficiência/genética , Adolescente , Alelos , Substituição de Aminoácidos , DNA Polimerase III/química , Replicação do DNA/genética , Estabilidade Enzimática/genética , Genes Recessivos , Humanos , Masculino , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/enzimologia , Transtornos do Neurodesenvolvimento/genética , Linhagem , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...