Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(3): e2301123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37921265

RESUMO

Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.


Assuntos
Amifostina , Humanos , Raios gama , Estudos Prospectivos , Dano ao DNA , Neurônios
2.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500887

RESUMO

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Microglia , Doença de Alzheimer/genética , Encéfalo
3.
Sci Rep ; 13(1): 7174, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138045

RESUMO

Sample pooling is a promising strategy to facilitate COVID-19 surveillance testing for a larger population in comparison to individual single testing due to resource and time constraints. Increased surveillance testing capacity will reduce the likelihood of outbreaks as the general population is returning to work, school, and other gatherings. We have analyzed the impact of three variables on the effectiveness of pooling test samples: swab type, workflow, and positive sample order. We investigated the performance of several commercially available swabs (Steripack polyester flocked, Puritan nylon flocked, Puritan foam) in comparison to a new injected molded design (Yukon). The bench-top performance of collection swab was conducted with a previously developed anterior nasal cavity tissue model, based on a silk-glycerol sponge to mimic soft tissue mechanics and saturated with a physiologically relevant synthetic nasal fluid spiked with heat-inactivated SARS-CoV-2. Overall, we demonstrated statistically significant differences in performance across the different swab types. A characterization of individual swab uptake (gravimetric analysis) and FITC microparticle release suggests that differences in absorbance and retention drive the observed differences in Ct of the pooled samples. We also proposed two distinct pooling workflows to encompass different community collection modes and analyzed the difference in resulting positive pools as an effect of workflow, swab type, and positive sample order. Overall, swab types with lower volume retention resulted in reduced false negative occurrence, also observed for collection workflows with limited incubation times. Concurrently, positive sample order did have a significant impact on pooling test outcome, particularly in the case of swab type with great volume retention. We demonstrated that the variables investigated here affect the results of pooled COVID-19 testing, and therefore should be considered while designing pooled surveillance testing.


Assuntos
Teste para COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Fluxo de Trabalho , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...