Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38363671

RESUMO

Acoustic radiation force (ARF)-based shear wave elastography (SWE) is a clinically available ultrasound imaging mode that noninvasively and quantitatively measures tissue stiffness. Current implementations of ARF-SWE are largely limited to 2-D imaging, which does not provide a robust estimation of heterogeneous tissue mechanical properties. Existing 3-D ARF-SWE solutions that are clinically available are based on wobbler probes, which cannot provide true 3-D shear wave motion detection. Although 3-D ARF-SWE based on 2-D matrix arrays have been previously demonstrated, they do not provide a practical solution because of the need for a high channel-count ultrasound system (e.g., 1024-channel) to provide adequate volume rates and the delicate circuitries (e.g., multiplexers) that are vulnerable to the long-duration "push" pulses. To address these issues, here we propose a new 3-D ARF-SWE method based on the 2-D row-column addressing (RCA) array which has a much lower element count (e.g., 256), provides an ultrafast imaging volume rate (e.g., 2000 Hz), and can withstand the push pulses. In this study, we combined the comb-push shear elastography (CUSE) technique with 2-D RCA for enhanced SWE imaging field-of-view (FOV). In vitro phantom studies demonstrated that the proposed method had robust 3-D SWE performance in both homogenous and inclusion phantoms. An in vivo study on a breast cancer patient showed that the proposed method could reconstruct 3-D elasticity maps of the breast lesion, which was validated using a commercial ultrasound scanner. These results demonstrate strong potential for the proposed method to provide a viable and practical solution for clinical 3-D ARF-SWE.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia , Movimento (Física) , Imagens de Fantasmas , Acústica
2.
Ultrasound Med Biol ; 48(11): 2292-2301, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031504

RESUMO

Accurate detection of liver steatosis is important for liver disease management. Ultrasound attenuation coefficient estimation (ACE) has great potential in quantifying liver fat content. The ACE methods commonly assume uniform tissue characteristics. However, in vivo tissues typically contain non-uniform structures, which may bias the attenuation estimation and lead to large standard deviations. Here we propose a series of non-uniform structure detection and removal (NSDR) methods to reduce the impact from non-uniform structures during ACE analysis. The effectiveness of NSDR was validated through phantom and in vivo studies. In a pilot clinical study, ACE with NSDR provided more robust in vivo performance as compared with ACE without NSDR, indicating its potential for in vivo applications.


Assuntos
Fígado Gorduroso , Hepatopatia Gordurosa não Alcoólica , Fígado Gorduroso/diagnóstico por imagem , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Projetos Piloto , Ultrassonografia/métodos
3.
Ultrasound Med Biol ; 48(10): 2095-2109, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35882573

RESUMO

The morphological features of vasculature in diseased tissue differ significantly from those in normal tissue. Therefore, vasculature quantification is crucial for disease diagnosis and staging. Ultrasound microvessel imaging (UMI) with ultrafast ultrasound acquisitions has been determined to have potential in clinical applications given its superior sensitivity in blood flow detection. However, the presence of spatial-dependent noise caused by a low imaging signal-to-noise ratio and incoherent clutter artifacts caused by moving hyperechoic scatterers degrades the performance of UMI and the reliability of vascular quantification. To tackle these issues, we proposed an improved UMI technique along with an adaptive vessel segmentation workflow for robust vessel identification and vascular feature quantification. A previously proposed sub-aperture cross-correlation technique and a normalized cross-correlation technique were applied to equalize the spatially dependent noise level and suppress the incoherent clutter artifact. A square operator and non-local means filter were then used to better separate the blood flow signal from residual background noise. On the de-noised ultrasound microvessel image, an automatic and adaptive vessel segmentation method was developed based on the different spatial patterns of blood flow signal and background noise. The proposed workflow was applied to a CIRS phantom, to a Doppler flow phantom and to an inflammatory bowel, kidney and liver, to validate its feasibility. Results revealed that automatic adaptive, and robust vessel identification performance can be achieved using the proposed method without the subjectivity caused by radiologists/operators.


Assuntos
Processamento de Imagem Assistida por Computador , Microvasos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Ultrassonografia
4.
Phys Med Biol ; 67(9)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35358950

RESUMO

Objective. Ultrasound attenuation coefficient estimation (ACE) has diagnostic potential for clinical applications such as quantifying fat content in the liver. Previously, we have proposed a system-independent ACE technique based on spectral normalization of different frequencies, called the reference frequency method (RFM). This technique does not require a well-calibrated reference phantom for normalization. However, this method may be vulnerable to severe reverberation clutter introduced by the body wall. The clutter superimposed on liver echoes may bias the estimation.Approach. We proposed to use robust principal component analysis, combined with wavelet-based sparsity promotion, to suppress the severe reverberation clutters. The capability to mitigate the reverberation clutters was validated through phantom andin vivostudies.Main Results. In the phantom studies with added reverberation clutters, higher normalized cross-correlation and smaller mean absolute errors were attained as compared to RFM results without the proposed method, demonstrating the capability to reconstruct tissue signals from reverberations. In a pilot patient study, the correlation between ACE and proton density fat fraction (PDFF), a measurement of liver fat by MRI as a reference standard, was investigated. The proposed method showed an improvement of the correlation (coefficient of determination,R = 0.82) as compared with the counterpart without the proposed method (R = 0.69).Significance: The proposed method showed the feasibility of suppressing the reverberation clutters, providing an important basis for the development of a robust ACE with large reverberation clutters.


Assuntos
Fígado , Imageamento por Ressonância Magnética , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Análise de Componente Principal , Ultrassonografia/métodos
5.
BME Front ; 2022: 9879632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850186

RESUMO

Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.

6.
J Ultrasound Med ; 41(4): 845-854, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34085301

RESUMO

OBJECTIVE: To use probe oscillation shear wave elastography (PROSE) with two vibration sources to generate two shear waves in the imaging plane to quantitatively assess the shear wave speeds (SWSs) of muscles with and without the diagnosis of taut bands (TB) and/or myofascial trigger points (MTrPs). METHODS: Thirty-three patients were scanned with the PROSE technique. Shear waves were generated through continuous vibration of the ultrasound probe, while the shear wave motions were detected using the same probe. SWSs for the sides with and without TBs and/or MTrPs were computed and compared. The pressure pain thresholds (PPTs) were measured as an indicator of maximum pain tolerance of patients. The statistical differences between the SWSs with and without TBs and/or MTrPs with different PPT values were analyzed using the nonparametric Wilcoxon rank-sum test. RESULTS: The mean SWSs for the sides with TBs and/or MTrPs are faster than that of the contralateral side without TBs and/or MTrPs. A significant difference was observed between mean SWSs with and without TBs and/or MTrPs without any information of PPT, with rank-sum test P < .005. Additionally, with the information of PPT, a significant difference was observed between mean SWSs for the sides with and without TBs and/or MTrPs, for PPT values between 0 and 50 N/cm2 (P < .005), but for PPT values between 50 and 90 N/cm2 , it was difficult to differentiate mean SWSs with and without TBs and/or MTrPs. CONCLUSION: Our preliminary results show that SWSs measured from patients had a significant difference between the mean SWSs with and without TBs and/or MTrPs.


Assuntos
Técnicas de Imagem por Elasticidade , Síndromes da Dor Miofascial , Técnicas de Imagem por Elasticidade/métodos , Humanos , Músculo Esquelético , Síndromes da Dor Miofascial/diagnóstico por imagem , Projetos Piloto , Pontos-Gatilho/diagnóstico por imagem , Ultrassonografia
7.
J Med Biol Eng ; 42(6): 767-779, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36712192

RESUMO

Three-dimensional (3D) ultrasound localization microscopy (ULM) using a 2-D matrix probe and microbubbles (MBs) has been recently proposed to visualize microvasculature beyond the ultrasound diffraction limit in three spatial dimensions. However, 3D ULM suffers from several limitations: (1) high system complexity due to numerous channel counts, (2) complex MB flow dynamics in 3D, and (3) extremely long acquisition time. To reduce the system complexity while maintaining high image quality, we used a sub-aperture process to reduce received channel counts. To address the second issue, a 3D bipartite graph-based method with Kalman filtering-based tracking was used in this study for MB tracking. An MB separation approach was incorporated to separate high concentration MB data into multiple, sparser MB datasets, allowing better MB localization and tracking for a limited acquisition time. The proposed method was first validated in a flow channel phantom, showing improved spatial resolutions compared with the contrasted enhanced power Doppler image. Then the proposed method was evaluated with an in vivo chicken embryo brain dataset. Results showed that the reconstructed 3D super-resolution image achieved a spatial resolution of around 52 µm (smaller than the wavelength of around 200 µm). Microvessels that cannot be resolved clearly using localization only, can be well identified with the tailored 3D pairing and tracking algorithms. To sum up, the feasibility of the 3D ULM is shown, indicating the great possibility in clinical applications.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33877970

RESUMO

Ultrasound attenuation coefficient estimation (ACE) has great diagnostic potential for fatty liver detection and assessment. In a previous study, we proposed a reference phantom-free ACE method, called reference frequency method (RFM), which does not require a calibrated phantom for normalization. The power of each frequency component can be normalized by the power of an adjacent frequency component in the spectrum to cancel system-dependent effects such as focusing and time gain compensation (TGC). RFM demonstrated accurate ACE in both phantom and in in-vivo liver studies. However, our study also showed that the robustness and penetration of RFM were affected by noise in the ACE signals. Here we propose a noise suppression (NS) and a signal-to-noise ratio (SNR) quality control method to reduce the influence of noise on ACE-RFM performance. The proposed methods were tested in harmonic ACE because harmonic imaging is a more frequently used mode than fundamental imaging for abdominal applications. After applying the NS and SNR control methods, the noise-induced bias for attenuation estimation in harmonic ACE was effectively reduced, leading to significantly improved effective penetration depth. The proposed methods directly measure the noise spectrum of the ultrasound system, which can also be adapted to other spectrum-based ACE methods, such as the reference phantom method and the spectra shift method.


Assuntos
Fígado , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
9.
Phys Med Biol ; 66(8)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33725687

RESUMO

Non-invasive detection of microvascular alterations in deep tissuesin vivoprovides critical information for clinical diagnosis and evaluation of a broad-spectrum of pathologies. Recently, the emergence of super-resolution ultrasound localization microscopy (ULM) offers new possibilities for clinical imaging of microvasculature at capillary level. Currently, the clinical utility of ULM on clinical ultrasound scanners is hindered by the technical limitations, such as long data acquisition time, high microbubble (MB) concentration, and compromised tracking performance associated with low imaging frame-rate. Here we present a robust in-human ULM on a high frame-rate (HFR) clinical ultrasound scanner to achieve super-resolution microvessel imaging using a short acquisition time (<10 s). Ultrasound MB data were acquired from different human tissues, including a healthy liver and a diseased liver with acute-on-chronic liver failure, a kidney, a pancreatic tumor, and a breast mass using an HFR clinical scanner. By leveraging the HFR and advanced processing techniques including sub-pixel motion registration, MB signal separation, and Kalman filter-based tracking, MBs can be robustly localized and tracked for ULM under the circumstances of relatively high MB concentration associated with standard clinical MB administration and limited data acquisition time in humans. Subtle morphological and hemodynamic information in microvasculature were shown based on data acquired with single breath-hold and free-hand scanning. Compared with contrast-enhanced power Doppler generated based on the same MB dataset, ULM showed a 5.7-fold resolution improvement in a vessel based on a linear transducer, and provided a wide-range blood flow speed measurement that is Doppler angle-independent. Microvasculatures with complex hemodynamics can be well-differentiated at super-resolution in both normal and pathological tissues. This preliminary study implemented the ultrafast in-human ULM in various human tissues based on a clinical scanner that supports HFR imaging, indicating the potentials of the technique for various clinical applications. However, rigorous validation of the technique in imaging human microvasculature (especially for those tiny vessel structure), preferably with a gold standard, is still required.


Assuntos
Microbolhas , Microscopia , Ultrassonografia , Estudos de Viabilidade , Humanos , Microvasos/diagnóstico por imagem
10.
Phys Med Biol ; 66(7)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33652418

RESUMO

Ultrasound localization microscopy (ULM) has been proposed to image microvasculature beyond the ultrasound diffraction limit. Although ULM can attain microvascular images with a sub-diffraction resolution, long data acquisition time and processing time are the critical limitations. Deep learning-based ULM (deep-ULM) has been proposed to mitigate these limitations. However, microbubble (MB) localization used in deep-ULMs is currently based on spatial information without the use of temporal information. The highly spatiotemporally coherent MB signals provide a strong feature that can be used to differentiate MB signals from background artifacts. In this study, a deep neural network was employed and trained with spatiotemporal ultrasound datasets to better identify the MB signals by leveraging both the spatial and temporal information of the MB signals. Training, validation and testing datasets were acquired from MB suspension to mimic the realistic intensity-varying and moving MB signals. The performance of the proposed network was first demonstrated in the chicken embryo chorioallantoic membrane dataset with an optical microscopic image as the reference standard. Substantial improvement in spatial resolution was shown for the reconstructed super-resolved images compared with power Doppler images. The full-width-half-maximum (FWHM) of a microvessel was improved from 133µm to 35µm, which is smaller than the ultrasound wavelength (73µm). The proposed method was further tested in anin vivohuman liver data. Results showed the reconstructed super-resolved images could resolve a microvessel of nearly 170µm (FWHM). Adjacent microvessels with a distance of 670µm, which cannot be resolved with power Doppler imaging, can be well-separated with the proposed method. Improved contrast ratios using the proposed method were shown compared with that of the conventional deep-ULM method. Additionally, the processing time to reconstruct a high-resolution ultrasound frame with an image size of 1024 × 512 pixels was around 16 ms, comparable to state-of-the-art deep-ULMs.


Assuntos
Microvasos , Animais , Embrião de Galinha , Galinhas , Processamento de Imagem Assistida por Computador , Microbolhas , Microscopia , Microvasos/diagnóstico por imagem , Redes Neurais de Computação , Ultrassonografia
11.
JGH Open ; 5(2): 193-198, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33553655

RESUMO

BACKGROUND AND AIM: Liraglutide, a long-acting GLP-1 analog, is approved for the treatment of obesity with improvements in fasting blood glucose, hemoglobin A1c, and cardiovascular health. Our aim was to measure the impact of liraglutide dose for obesity on hepatic steatosis measured by ultrasound. METHODS: A single-center, randomized, double-blind, placebo-controlled pilot trial was undertaken in nondiabetic obese, otherwise healthy patients aged 18-65 years. Participants were randomly assigned to receive subcutaneous liraglutide (3.0 mg) or placebo over 16 weeks with dose escalation following US Food and Drug Administration guidelines. Both groups received standardized nutritional and behavioral counseling during the 16 weeks. Hepatic fat content was measured by ultrasound at baseline, 8 weeks, and 16 weeks as an attenuation coefficient (ACE). Effects of treatment were assessed using t-test for the entire groups and for patient subgroup with baseline ACE >0.66 (indicating significant steatosis). RESULTS: Among 30 patients (93% female) enrolled, 16 were randomized to placebo and 14 to liraglutide. Baseline body mass indices (BMIs) and average age were similar in the two groups. After 16 weeks, the liraglutide group had a significant improvement in steatosis ACE scores (-0.068 ± 0.02 vs -0.0077 ± 0.02 placebo, P = 0.05). Change in steatosis was positively correlated with change in BMI (R2 = 0.402, P = 0.0007). Within the liraglutide group, patients with baseline ACE >0.66 had improvement in ACE (-0.134 ± 0.03) compared to those without significant steatosis (-0.041 ± 0.02, P = 0.05). CONCLUSIONS: In this pilot trial, liraglutide, 3.0 mg over 16 weeks, reduced hepatic steatosis; a reduction in hepatic steatosis is correlated with BMI reduction, and effects are particularly evident in those with a significant degree of steatosis by ultrasound imaging.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33513103

RESUMO

Ultrasound vascular imaging based on ultrafast plane wave imaging and singular value decomposition (SVD) clutter filtering has demonstrated superior sensitivity in blood flow detection. However, ultrafast ultrasound vascular imaging is susceptible to electronic noise due to the weak penetration of unfocused waves, leading to a lower signal-to-noise ratio (SNR) at larger depths. In addition, incoherent clutter artifacts originating from strong and moving tissue scatterers that cannot be completely removed create a strong mask on top of the blood signal that obscures the vessels. Herein, a method that can simultaneously suppress the background noise and incoherent artifacts is proposed. The method divides the tilted plane or diverging waves into two subgroups. Coherent spatial compounding is performed within each subgroup, resulting in two compounded data sets. An SVD-based clutter filter is applied to each data set, followed by a correlation between the two data sets to produce a vascular image. Uncorrelated noise and incoherent artifacts can be effectively suppressed with the correlation process, while the coherent blood signal can be preserved. The method was evaluated in wire-target simulations and phantom, in which around 7-10-dB SNR improvement was shown. Consistent results were found in a flow channel phantom with improved SNR by the proposed method (39.9 ± 0.2 dB) against conventional power Doppler (29.1 ± 0.6 dB). Last, we demonstrated the effectiveness of the method combined with block-wise SVD clutter filtering in a human liver, breast tumor, and inflammatory bowel disease data sets. The improved blood flow visualization may facilitate more reliable small vessel imaging for a wide range of clinical applications, such as cancer and inflammatory diseases.


Assuntos
Artefatos , Ultrassonografia Doppler , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Razão Sinal-Ruído , Ultrassonografia
13.
Ultrasound Med Biol ; 47(4): 1089-1098, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33468358

RESUMO

Singular value decomposition-based clutter filters can robustly reject tissue clutter, allowing for detection of slow blood flow in imaging microvasculature. However, to identify microvessels, high ultrasound frequency must be used to increase the spatial resolution at the expense of shorter depth of penetration. Deconvolution using Tikhonov regularization is an imaging processing method widely used to improve spatial resolution. The ringing artifact of Tikhonov regularization, though, can produce image artifacts such as non-existent microvessels, which degrade image quality. Therefore, a deconvolution method using total variation is proposed in this study to improve spatial resolution and mitigate the ringing artifact. Performance of the proposed method was evaluated using chicken embryo brain, ex ovo chicken embryo chorioallantoic membrane and tumor data. Results revealed that the reconstructed power Doppler (PD) images are substantially improved in spatial resolution compared with original PD images: the full width half-maximum (FWHM) of the cross-sectional profile of a microvessel was improved from 132 to 83 µm. Two neighboring microvessels that were 154 µm apart were better separated using the proposed method than conventional PD imaging. Additionally, 223 FWHMs measured from the cross-sectional profiles of 223 vessels were used to determine the improvement in FWHM with the proposed method statistically. The mean ± standard deviation of the FWHM without and with the proposed method was 233.19 ± 85.08 and 172.31 ± 75.11 µm, respectively; the maximum FWHM without and with the proposed method was 693.01 and 668.69 µm; and the minimum FWHM without and with the proposed method was 73.92 and 45.74 µm. There were statistically significant differences between FWHMs with and without the proposed method according to the rank-sum test, p < 0.0001. The contrast-to-noise ratio improved from 1.06 to 4.03 dB with use of the proposed method. We also compared the proposed method with Tikhonov regularization using ex ovo chicken embryo chorioallantoic membrane data. We found that the proposed method outperformed Tikhonov regularization as false microvessels appeared using the Tikhonov regularization but not with the proposed method. These results indicate that the proposed method is capable of providing more robust PD images with higher spatial resolution and higher contrast-to-noise ratio.


Assuntos
Encéfalo/irrigação sanguínea , Carcinoma de Células Renais/irrigação sanguínea , Membrana Corioalantoide/irrigação sanguínea , Processamento de Imagem Assistida por Computador/métodos , Microvasos/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Animais , Artefatos , Embrião de Galinha , Transplante de Neoplasias , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
14.
Ultrasound Med Biol ; 46(11): 3080-3087, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32773254

RESUMO

Accurate detection of liver steatosis is important for liver disease management. Ultrasound attenuation coefficient estimation (ACE) has great potential in quantifying liver fat content. The commonly used ACE methods (e.g., spectral shift methods, reference phantom methods) assume linear tissue response to ultrasound and were developed in fundamental imaging. However, fundamental imaging may be vulnerable to reverberation clutters introduced by the body wall. The clutters superimposed on liver echoes may bias the attenuation estimation. Here we propose a new ACE technique, the reference frequency method (RFM), in harmonic imaging to mitigate the reverberation bias. The accuracy of harmonic RFM was validated through a phantom study. In a pilot patient study, harmonic RFM performed more robustly in vivo compared with fundamental RFM, illustrating the potential of ACE in harmonic imaging.


Assuntos
Fígado Gorduroso/diagnóstico por imagem , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Projetos Piloto , Ultrassonografia/métodos
15.
Neuroimage ; 221: 117183, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702485

RESUMO

In this study functional ultrasound (fUS) imaging has been implemented to explore the local hemodynamics response induced by electrical epidural stimulation and to study real-time in vivo functional changes of the spinal cord, taking advantage of the superior spatiotemporal resolution provided by fUS. By quantifying the hemodynamics and electromyographic response features, we tested the hypothesis that the temporal hemodynamics response of the spinal cord to electrical epidural stimulation could reflect modulation of the spinal circuitry and accordingly respond to the changes in parameters of electrical stimulation. The results of this study for the first time demonstrate that the hemodynamics response to electrical stimulation could reflect a neural-vascular coupling of the spinal cord. Response in the dorsal areas to epidural stimulation was significantly higher and faster compared to the response in ventral spinal cord. Positive relation between the hemodynamics and the EMG responses was observed at the lower frequencies of epidural stimulation (20 and 40 Hz), which according to our previous findings can facilitate spinal circuitry after spinal cord injury, compared to higher frequencies (200 and 500 Hz). These findings suggest that different mechanisms could be involved in spinal cord hemodynamics changes during different parameters of electrical stimulation and for the first time provide the evidence that neural-vascular coupling of the spinal cord circuitry could be related to specific organization of spinal cord vasculature and hemodynamics.


Assuntos
Potencial Evocado Motor/fisiologia , Hemodinâmica/fisiologia , Rede Nervosa/fisiologia , Acoplamento Neurovascular/fisiologia , Medula Espinal/fisiologia , Animais , Eletromiografia , Masculino , Rede Nervosa/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley , Medula Espinal/diagnóstico por imagem , Ultrassonografia
16.
Phys Med Biol ; 65(21): 215009, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32663816

RESUMO

Two-dimensional (2D) ultrasound shear wave elastography (SWE) has been widely used for soft tissue properties assessment. Given that shear waves propagate in three dimensions (3D), extending SWE from 2D to 3D is important for comprehensive and accurate stiffness measurement. However, implementation of 3D SWE on a conventional ultrasound scanner is challenging due to the low volume rate (tens of Hertz) associated with limited parallel receive capability of the scanner's hardware beamformer. Therefore, we developed an external mechanical vibration-based 3D SWE technique allowing robust 3D shear wave tracking and speed reconstruction for conventional scanners. The aliased shear wave signal detected with a sub-Nyquist sampling frequency was corrected by leveraging the cyclic nature of the sinusoidal shear wave generated by the external vibrator. Shear wave signals from different sub-volumes were aligned in temporal direction to correct time delays from sequential pulse-echo events, followed by 3D speed reconstruction using a 3D local frequency estimation algorithm. The technique was validated on liver fibrosis phantoms with different stiffness, showing good correlation (r = 0.99, p < 0.001) with values measured from a state-of-the-art SWE system (GE LOGIQ E9). The phantoms with different stiffnesses can be well-differentiated regardless of the external vibrator position, indicating the feasibility of the 3D SWE with regard to different shear wave propagation scenarios. Finally, shear wave speed calculated by the 3D method correlated well with magnetic resonance elastography performed on human liver (r = 0.93, p = 0.02), demonstrating the in vivo feasibility. The proposed technique relies on low volume rate imaging and can be implemented on the widely available clinical ultrasound scanners, facilitating its clinical translation to improve liver fibrosis evaluation.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Imageamento Tridimensional/instrumentação , Vibração , Humanos , Cirrose Hepática/diagnóstico por imagem , Imagens de Fantasmas
17.
Ultrasonics ; 107: 106163, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32353739

RESUMO

Singular value decomposition (SVD)-based clutter filters can robustly reject the tissue clutter as compared with the conventional high pass filter-based clutter filters. However, the computational burden of SVD makes real time SVD-based clutter filtering challenging (e.g. frame rate at least 10-15 Hz with region of interest of about 4 × 4 cm2). Recently, we proposed an acceleration method based on randomized SVD (rSVD) clutter filtering and randomized spatial downsampling, which can significantly reduce the computational complexity without compromising the clutter rejection capability. However, this method has not been implemented on an ultrasound scanner and tested for its performance. In this study, we implement this acceleration method on a Verasonics scanner using a multi-core CPU architecture, and evaluate the selections of the imaging and processing parameters to enable real time micro-vessel imaging. The Blood-to-Clutter Ratio (BCR) performance was evaluated on a Verasonics machine with different settings of parameters such as block size and ensemble size. The demonstration of real time process was implemented on a 12-core CPU (downsampling factor of 12, 12-threads in this study) host computer. The processing time of the rSVD-based clutter filter was less than 30 ms and BCRs were higher than 20 dB as the block size, ensemble size and the rank of tissue clutter subspace were set as 30 × 30, 45 and 26 respectively. We also demonstrate that the micro-vessel imaging frame rate of the proposed architecture can reach approximately 22 Hz when the block size, ensemble size and the rank of tissue clutter subspace were set as 20 × 20 pixels, 45 and 26 respectively (using both images and supplementary videos). The proposed method may be important for real time 2D scanning of tumor microvessels in 3D to select and store the most representative 2D view with most abnormal micro-vessels for better diagnosis.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia Doppler/métodos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Imagens de Fantasmas , Ultrassonografia Doppler/instrumentação
18.
Sci Rep ; 10(1): 6007, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265457

RESUMO

Super-resolution ultrasound localization microscopy (ULM), based on localization and tracking of individual microbubbles (MBs), offers unprecedented microvascular imaging resolution at clinically relevant penetration depths. However, ULM is currently limited by the requirement of dilute MB concentrations to ensure spatially sparse MB events for accurate localization and tracking. The corresponding long imaging acquisition times (tens of seconds or several minutes) to accumulate sufficient isolated MB events for full reconstruction of microvasculature preclude the clinical translation of the technique. To break this fundamental tradeoff between acquisition time and MB concentration, in this paper we propose to separate spatially overlapping MB events into sub-populations, each with sparser MB concentration, based on spatiotemporal differences in the flow dynamics (flow speeds and directions). MB localization and tracking are performed for each sub-population separately, permitting more robust ULM imaging of high-concentration MB injections. The superiority of the proposed MB separation technique over conventional ULM processing is demonstrated in flow channel phantom data, and in the chorioallantoic membrane of chicken embryos with optical imaging as an in vivo reference standard. Substantial improvement of ULM is further demonstrated on a chicken embryo tumor xenograft model and a chicken brain, showing both morphological and functional microvasculature details at super-resolution within a short acquisition time (several seconds). The proposed technique allows more robust MB localization and tracking at relatively high MB concentrations, alleviating the need for dilute MB injections, and thereby shortening the acquisition time of ULM imaging and showing great potential for clinical translation.


Assuntos
Meios de Contraste , Microbolhas , Microvasos/diagnóstico por imagem , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Embrião de Galinha , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Meios de Contraste/análise , Processamento de Imagem Assistida por Computador/instrumentação , Processamento de Imagem Assistida por Computador/métodos , Microscopia/instrumentação , Microscopia/métodos , Neoplasias/irrigação sanguínea , Imagens de Fantasmas , Ultrassonografia/instrumentação , Ultrassonografia/métodos
19.
J Ultrasound Med ; 39(9): 1819-1827, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32297357

RESUMO

OBJECTIVES: Crohn disease (CD) is a chronic inflammation in the digestive tract that affects millions of Americans. Bowel vascularity has important diagnostic information because inflammation is associated with blood flow changes. We recently developed an ultrasensitive ultrasound microvessel imaging (UMI) technique with high vessel sensitivity. This study aimed to evaluate the feasibility of UMI to assist CD detection and staging. METHODS: Ultrasound microvessel imaging was performed on 76 bowel wall segments from 48 symptomatic patients with CD. Clinically indicated computed tomographic/magnetic resonance enterography was used as the reference standard. The vessel-length ratio (VLR, the number of vessel pixels in the bowel wall segment normalized to the segment length) was derived in both conventional color flow imaging (CFI) and UMI to quantitatively stage disease activity. Receiver operating characteristic curves were then analyzed between different disease groups. RESULTS: The VLR-CFI and VLR-UMI detected similar correlations between vascularization and disease activity: severe inflammation had a higher VLR than normal/mildly inflamed bowels (P < .05). No significant difference was found between quiescent and mild CD due to the small sample size. The VLR-CFI had more difficulties in distinguishing quiescent versus mild CD compared to the VLR-UMI. After combining the VLR-UMI with thickness, in the receiver operating characteristic curve analysis, the areas under the curves (AUCs) improved to AUC1 = 0.996 for active versus quiescent CD, AUC2 = 0.978 for quiescent versus mild CD, and AUC3 = 0.931 for mild versus severe CD, respectively, compared to those using thickness alone (AUC1 = 0.968; P = .04; AUC2 = 0.919; P = .16; AUC3 = 0.857; P = .01). CONCLUSIONS: Ultrasound microvessel imaging offers a safe and cost-effective tool for CD diagnosis and staging, which may potentially assist disease activity classification and therapy efficacy evaluation.


Assuntos
Doença de Crohn , Doença de Crohn/diagnóstico por imagem , Humanos , Inflamação , Imageamento por Ressonância Magnética , Microvasos/diagnóstico por imagem , Projetos Piloto
20.
Artigo em Inglês | MEDLINE | ID: mdl-32248099

RESUMO

Contrast microbubble (MB)-based super-resolution ultrasound microvessel imaging (SR-UMI) overcomes the compromise in conventional ultrasound imaging between spatial resolution and penetration depth and has been successfully applied to a wide range of clinical applications. However, clinical translation of SR-UMI remains challenging due to the limited number of MBs detected within a given accumulation time. Here, we propose a Kalman filter-based method for robust MB tracking and improved blood flow speed measurement with reduced numbers of MBs. An acceleration constraint and a direction constraint for MB movement were developed to control the quality of the estimated MB trajectory. An adaptive interpolation approach was developed to inpaint the missing microvessel signal based on the estimated local blood flow speed, facilitating more robust depiction of microvasculature with a limited amount of MBs. The proposed method was validated on an ex ovo chorioallantoic membrane and an in vivo rabbit kidney. Results demonstrated improved imaging performance on both microvessel density maps and blood flow speed maps. With the proposed method, the percentage of microvessel filling in a selected blood vessel at a given accumulation period was increased from 28.17% to 74.45%. A similar SR-UMI performance was achieved with MB numbers reduced by 85.96%, compared to that with the original MB number. The results indicate that the proposed method substantially improves the robustness of SR-UMI under a clinically relevant imaging scenario where SR-UMI is challenged by a limited MB accumulation time, reduced number of MBs, lowered imaging frame rate, and degraded signal-to-noise ratio.


Assuntos
Algoritmos , Microbolhas , Microvasos/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Feminino , Processamento de Imagem Assistida por Computador , Rim/irrigação sanguínea , Rim/diagnóstico por imagem , Coelhos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...