Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-294231

RESUMO

Emerging clinical data demonstrates that COVID-19, the disease caused by SARS-CoV2, is a syndrome that variably affects nearly every organ system. Indeed, the clinical heterogeneity of COVID-19 ranges from relatively asymptomatic to severe disease with death resultant from multiple constellations of organ failures. In addition to genetics and host characteristics, it is likely that viral dissemination is a key determinant of disease manifestation. Given the complexity of disease expression, one major limitation in current animal models is the ability to capture this clinical heterogeneity due to technical limitations related to murinizing SARS-CoV2 or humanizing mice to render susceptible to infection. Here we describe a murine model of COVID-19 using respiratory infection with the native mouse betacoronavirus MHV-A59. We find that whereas high viral inoculums uniformly led to hypoxemic respiratory failure and death, lethal dose 50% (LD50) inoculums led to a recapitulation of most hallmark clinical features of COVID-19, including lymphocytopenias, heart and liver damage, and autonomic dysfunction. We find that extrapulmonary manifestations are due to viral metastasis and identify a critical role for type-I but not type-III interferons in preventing systemic viral dissemination. Early, but not late treatment with intrapulmonary type-I interferon, as well as convalescent serum, provided significant protection from lethality by limiting viral dissemination. We thus establish a Biosafety Level II model that may be a useful addition to the current pre-clinical animal models of COVID-19 for understanding disease pathogenesis and facilitating therapeutic development for human translation.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20172189

RESUMO

BackgroundNovel coronavirus (SARS-CoV-2) has infected over 17 million. Novel therapies are urgently needed. Janus-kinase (JAK) inhibitors and Type I interferons have emerged as potential antiviral candidates for COVID-19 patients for their proven efficacy against diseases with excessive cytokine release and by their ability to promote viral clearance in past coronaviruses, respectively. We conducted a systemic review and meta-analysis to evaluate role of these therapies in COVID-19 patients. MethodsMEDLINE and MedRxiv were searched until July 30th, 2020, including studies that compared treatment outcomes of humans treated with JAK-inhibitor or Type I interferon against controls. Inclusion necessitated data with clear risk estimates or those that permitted back-calculation. ResultsWe searched 733 studies, ultimately including four randomized and eleven non-randomized clinical trials. JAK-inhibitor recipients had significantly reduced odds of mortality (OR, 0.12; 95%CI, 0.03-0.39, p=0.0005) and ICU admission (OR, 0.05; 95%CI, 0.01-0.26, p=0.0005), and had significantly increased odds of hospital discharge (OR, 22.76; 95%CI, 10.68-48.54, p<0.00001), when compared to standard treatment group. Type I interferon recipients had significantly reduced odds of mortality (OR, 0.19; 95%CI, 0.04-0.85, p=0.03), and increased odds of discharge bordering significance (OR, 1.89; 95%CI, 1.00-3.59, p=0.05). ConclusionsJAK-inhibitor treatment is significantly associated with positive clinical outcomes regarding mortality, ICU admission, and discharge. Type I interferon treatment is associated with positive clinical outcomes regarding mortality and discharge. While these data show promise, additional randomized clinical trials are needed to further elucidate the efficacy of JAK-inhibitors and Type I interferons and clinical outcomes in COVID-19. KEY MESSAGESO_ST_ABSKey QuestionC_ST_ABSCan treatment of hospitalized COVID-19 patients with JAK-inhibitor or Type I interferon confer favorable clinical outcomes? Bottom LineMeta-analysis demonstrates that JAK-inhibitor treatment was significantly associated with favorable clinical outcomes in terms of mortality, requiring mechanical ventilation, and hospital discharge, while treatment with Type I interferon was significantly associated with decreased mortality. Why Read On?This study conducted a systematic review of human trials that treated patients with JAK-inhibitors or Type I interferon, and it elaborates on the potential benefits of administering these therapies at different moments of the disease course despite apparently opposite mechanism of action of these two interventions.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20153437

RESUMO

A dysregulated immune response against the SARS-CoV-2 virus plays a critical role in severe COVID-19. However, the molecular and cellular mechanisms by which the virus causes lethal immunopathology are poorly understood. Here, we utilize multiomics single-cell analysis to probe dynamic immune responses in patients with stable or progressive manifestations of COVID-19, and assess the effects of tocilizumab, an anti-IL-6 receptor monoclonal antibody. Coordinated profiling of gene expression and cell lineage protein markers reveals a prominent type-1 interferon response across all immune cells, especially in progressive patients. An anti-inflammatory innate immune response and a pre-exhaustion phenotype in activated T cells are hallmarks of progressive disease. Skewed T cell receptor repertoires in CD8+ T cells and uniquely enriched V(D)J sequences are also identified in COVID-19 patients. B cell repertoire and somatic hypermutation analysis are consistent with a primary immune response, with possible contribution from memory B cells. Our in-depth immune profiling reveals dyssynchrony of the innate and adaptive immune interaction in progressive COVID-19, which may contribute to delayed virus clearance and has implications for therapeutic intervention.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20149849

RESUMO

Introductory ParagraphThe COVID-19 pandemic has affected more than 10 million people worldwide with mortality exceeding half a million patients. Risk factors associated with severe disease and mortality include advanced age, hypertension, diabetes, and obesity.1 Clear mechanistic understanding of how these comorbidities converge to enable severe infection is lacking. Notably each of these risk factors pathologically disrupts the lipidome and this disruption may be a unifying feature of severe COVID-19.1-7 Here we provide the first in depth interrogation of lipidomic changes, including structural-lipids as well as the eicosanoids and docosanoids lipid mediators (LMs), that mark COVID-19 disease severity. Our data reveal that progression from moderate to severe disease is marked by a loss of specific immune regulatory LMs and increased pro-inflammatory species. Given the important immune regulatory role of LMs, these data provide mechanistic insight into the immune balance in COVID-19 and potential targets for therapy with currently approved pharmaceuticals.8

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-188953

RESUMO

COVID-19 pandemic has infected millions of people with mortality exceeding 300,000. There is an urgent need to find therapeutic agents that can help clear the virus to prevent the severe disease and death. Identifying effective and safer drugs can provide with more options to treat the COVID-19 infections either alone or in combination. Here we performed a high throughput screen of approximately 1700 US FDA approved compounds to identify novel therapeutic agents that can effectively inhibit replication of coronaviruses including SARS-CoV-2. Our two-step screen first used a human coronavirus strain OC43 to identify compounds with anti-coronaviral activities. The effective compounds were then screened for their effectiveness in inhibiting SARS-CoV-2. These screens have identified 24 anti-SARS-CoV-2 drugs including previously reported compounds such as hydroxychloroquine, amlodipine, arbidol hydrochloride, tilorone 2HCl, dronedarone hydrochloride, and merfloquine hydrochloride. Five of the newly identified drugs had a safety index (cytotoxic/effective concentration) of >600, indicating wide therapeutic window compared to hydroxychloroquine which had safety index of 22 in similar experiments. Mechanistically, five of the effective compounds were found to block SARS-CoV-2 S protein-mediated cell fusion. These FDA approved compounds can provide much needed therapeutic options that we urgently need in the midst of the pandemic.Competing Interest StatementThe authors have declared no competing interest.View Full Text

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20097402

RESUMO

The coronavirus disease 2019 crisis is creating a shortage of personal protective equipment (PPE), most critically, N95 respirators for healthcare personnel. Our group was interested in the feasibility of ozone disinfection of N95 respirators as an alternative for healthcare professionals and organizations that might not have access to other disinfection devices. We tested the effectiveness of ozone on killing Pseudomonas aeruginosa (PsA) on three different N95 respirators: 3M 1860, 3M 1870, and 3M 8000. We used an ozone chamber that consisted of: an airtight chamber, an ozone generator, an ozone destruct unit, and an ozone UV analyzer. The chamber was capable of concentrating ozone up to 500 parts per million (ppm) from ambient air, creating an airtight seal, and precisely measuring ozone levels within the chamber. Exposure to ozone at 400 ppm with 80% humidity for two hours effectively killed bacteria on N95 respirators, types 1860, 1870, and 8000. There were no significant changes in filtration efficiency of the 1860 and 1870 type respirators for up to ten cycles of ozone exposure at similar conditions. There was no change in fit observed in the 1870 type respirator after ozone exposure. There was no significant change in the strap integrity of the 1870 type respirator after ozone exposure. Tests for filtration efficiency were not performed on the 8000 type respirator. Tests for fit or strap integrity were not performed on the 8000 or 1860 type respirators. This study demonstrates that an ozone application achieves a high level of disinfection against PsA, a vegetative bacteria that the CDC identifies as more difficult to kill than medium sized viruses such as SARS-CoV-2 (Covid-19). Furthermore, conditions shown to kill these bacteria did not damage or degrade respirator filtration. This is the first report of successful disinfection of N95 PPE with ozone of which the authors are aware. It is also the first report, to the authors knowledge, to identify necessary conditions for ozone to kill organisms on N95 masks without degrading the function of N95 filters.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20070102

RESUMO

Seasonal influenza (flu) is an underappreciated source of disease morbidity and mortality worldwide. While vaccination remains the cornerstone of influenza prevention, common measures practiced during the COVID-19 pandemic such as social distancing, the use of protective face masks, and frequent hand washing are rarely utilized during flu season. In this investigation, we examined the effect of these preventative measures in decreasing influenza burden this year. We examined three countries with major COVID-19 outbreaks i.e. China, Italy and the United States, and compared the flu activity this year to the average of the last 4 years (2015-2019). We found that this year in China and Italy, there was a significantly steeper decline of flu cases than average, which correlated with an increase in positive COVID-19 case reports in those countries. These "averted" cases can be translated into a substantial decrease in morbidity and mortality. As such, we conclude that the current COVID-19 pandemic is a reminder that behavioral measures can decrease the burden of communicable respiratory infections, and these measures should be adopted to an extent during normal influenza season.

8.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-212088

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease, and bacterial infection plays a role in its pathogenesis. Bacteria secrete nanometer-sized extracellular vesicles (EVs), which may induce more immune dysfunction and inflammation than the bacteria themselves. We hypothesized that the microbiome of lung EVs might have distinct characteristics depending on the presence of COPD and smoking status. We analyzed and compared the microbiomes of 13 nonsmokers with normal spirometry, 13 smokers with normal spirometry (healthy smokers) and 13 patients with COPD by using 16S ribosomal RNA gene sequencing of surgical lung tissue and lung EVs. Subjects were matched for age and sex in all groups and for smoking levels in the COPD and healthy smoker groups. Each group included 12 men and 1 woman with the same mean age of 65.5 years. In all groups, EVs consistently showed more operational taxonomic units (OTUs) than lung tissue. In the healthy smoker and COPD groups, EVs had a higher Shannon index and a lower Simpson index than lung tissue and this trend was more prominent in the COPD group. Principal component analysis (PCA) showed clusters based on sample type rather than participants' clinical characteristics. Stenotrophomonas, Propionibacterium and Alicyclobacillus were the most commonly found genera. Firmicutes were highly present in the EVs of the COPD group compared with other samples or groups. Our analysis of the lung microbiome revealed that the bacterial communities present in the EVs and in the COPD group possessed distinct characteristics with differences in the OTUs, diversity indexes and PCA clustering.


Assuntos
Feminino , Humanos , Masculino , Alicyclobacillus , Bactérias , Infecções Bacterianas , Vesículas Extracelulares , Firmicutes , Inflamação , Pulmão , Microbiota , Anafilaxia Cutânea Passiva , Análise de Componente Principal , Propionibacterium , Doença Pulmonar Obstrutiva Crônica , RNA Ribossômico 16S , Fumaça , Fumar , Espirometria , Stenotrophomonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA