Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Luminescence ; 38(3): 326-333, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36747330

RESUMO

Zr1-x Cex O2 with x = 0.005, 0.01, 0.02, and 0.03 samples were synthesized using a combustion technique. The X-ray diffraction results revealed that Ce-doped ZrO2 nanoparticles were in a monoclinic structure up to 1 mol% Ce concentration. The increase in the Ce concentration caused more distortion in the monoclinic structure of zirconia. The samples showed a mixed phase (monoclinic + tetragonal) beyond 1 mol% Ce content. The crystallite size (D) and strain (ε) were calculated from the Williamson-Hall equation. The D decreased from 25 ± 1 to 20 ± 1 nm and ε increased from 0.03 to 0.28% with an increase in Ce concentration. Photoluminescence (PL) spectra of Zr1-x Cex O2 showed emission in the blue region under an excitation wavelength of 290 nm. Zr0.995 Ce0.005 O2 showed the highest PL intensity with an average lifetime of 0.93 µs, and the PL intensity decreased with the increase in the Ce concentration. Thermoluminescence (TL) glow curves of Zr1-x Cex O2 were measured after gamma irradiation (500 Gy) with a heating rate of 5 K s-1 . The TL curve of Zr0.995 Ce0.005 O2 showed two prominent peaks at 412 K (peak 1) and 600 K (peak 2). The first TL glow peak was shifted towards a higher temperature at 440 K above 1 mol% Ce concentration. Repetitive TL measurements on the same aliquot exhibited excellent repeatability. Kinetic parameters associated with the TL peaks were calculated using the curve fitting method. Peak 1 followed non-first-order kinetics. The value of the activation energy of the 440 K peak was found to be 0.95 ± 0.01 eV for Zr0.99 Ce0.01 O2 . These findings showed that Zr1-x Cex O2 might be used in lighting and radiation dosimeter applications.


Assuntos
Luminescência , Difração de Raios X , Cinética
2.
J Phys Condens Matter ; 35(13)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36657170

RESUMO

This study reports the effect of 120 MeV swift Au9+ion irradiation on the structures of monoclinic, tetragonal and cubic ZrO2, probed through x-ray diffraction (XRD) and Raman spectroscopy. Three phases of ZrO2were prepared using the solution combustion method. The tetragonal and cubic phases of ZrO2were stabilized at room temperature by adding 6% and 10% of yttrium ions, respectively. Both the XRD and Raman results confirm the partial phase transition from monoclinic to tetragonal, which was approximately 74%. Tetragonal ZrO2is stable under 120 MeV Au9+ion irradiation. Interestingly, a phase transition from cubic to tetragonal ZrO2was observed under 120 MeV Au9+ion irradiation. The roles of transient temperature, defects and strain in the lattice induced by swift heavy ions are discussed. This study reveals the structural stability of different phases of ZrO2under swift heavy ion irradiation and should be helpful in choosing potential hosts for various applications such as inert fuel matrix inside the core of nuclear reactors, oxygen sensors and accelerators, and radiation shielding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...