Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307337

RESUMO

The release of industrial effluents, comprising of organic dyes, antibiotics, and heavy metals poses substantial environmental and ecological threats. Among the different approaches, the utilization of heterogeneous photocatalysis based on semiconducting metal oxides is of paramount important to removal of organic ( MB dye and TC antibiotic) and inorganic pollutants ( Cr (VI) ) in wastewater. In this work, a new approach for creating type-II heterojunction photocatalysts named xNiCo2O4/BiVO4 or BNC is suggested. The as-prepared samples were thoroughly examined by means of several sophisticated analytical tools to investigate their physicochemical properties. These composites were utilized in the decomposition of MB dye, TC drug and the reduction of Cr (VI) under visible light irradiation. According to the findings, the creation of type-II heterojunction at BiVO4-NiCo2O4 interface greatly improved charge transportation while successfully preventing electron-hole recombination. Among the various composites studied, BNC-2 demonstrated an enhanced photocatalytic activity towards degradation of MB and TC, which were found to be 91 % over a period of 150 min and 95 % within only 60 min, respectively. Moreover, the photocatalytic reduction of Cr (VI) was accomplished 96 % within just 25 min. Additionally, it is discovered that BNC-2 displayed promising photostability and recyclability with a retention of >90 % after five consecutive cycles. The enhanced photocatalytic activity of BNC-2 is evidently attributed to the expedited separation and transfer of charges, as proven by photocurrent measurement, photoluminescence and electrochemical impedance spectroscopy analyses. Hence, the current amalgamation of NiCo2O4 and BiVO4 heterojunction composite has paved novel paths towards photocatalytic removal of organic as well as inorganic contaminants.


Assuntos
Bismuto , Poluentes Ambientais , Bismuto/química , Luz , Antibacterianos , Óxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...