Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Bio Med Chem Au ; 4(2): 86-94, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38645928

RESUMO

Vancomycin's interactions with cellular targets drive its antimicrobial activity and also trigger expression of resistance against the antibiotic. Interaction partners for vancomycin have previously been identified using photoaffinity probes, which have proven to be useful tools for exploring vancomycin's interactome. This work seeks to develop diazirine-based vancomycin photoprobes that display enhanced specificity and bear fewer chemical modifications as compared to previous photoprobes. Using proteins fused to vancomycin's main cell-wall target, d-alanyl-d-alanine, we used mass spectrometry to show that these photoprobes specifically label known vancomycin-binding partners within minutes. In a complementary approach, we developed a Western-blot strategy targeting the vancomycin adduct of the photoprobes, eliminating the need for affinity tags and simplifying the analysis of photolabeling reactions. Together, the probes and identification strategy provide a novel and streamlined pipeline for identifying vancomycin-binding proteins.

2.
J Biol Chem ; 300(3): 105723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311172

RESUMO

Gram-negative bacteria use TonB-dependent transport to take up nutrients from the external environment, employing the Ton complex to import a variety of nutrients that are either scarce or too large to cross the outer membrane unaided. The Ton complex contains an inner-membrane motor (ExbBD) that generates force, as well as nutrient-specific transport proteins on the outer membrane. These two components are coupled by TonB, which transmits the force from the inner to the outer membrane. TonB contains an N-terminus anchored in the inner membrane, a C-terminal domain that binds the outer-membrane transporter, and a proline-rich linker connecting the two. While much is known about the interaction between TonB and outer-membrane transporters, the critical interface between TonB and ExbBD is less well understood. Here, we identify a conserved motif within TonB that we term the D-box, which serves as an attachment point for ExbD. We characterize the interaction between ExbD and the D-box both functionally and structurally, showing that a homodimer of ExbD captures one copy of the D-box peptide via beta-strand recruitment. We additionally show that both the D-box motif and ExbD are conserved in a range of Gram-negative bacteria, including members of the ESKAPE group of pathogens. The ExbD:D-box interaction is likely to represent an important aspect of force transduction between the inner and outer membranes. Given that TonB-dependent transport is an important contributor to virulence, this interaction is an intriguing potential target for novel antibacterial therapies.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transporte Biológico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica
3.
IUCrJ ; 11(Pt 2): 133-139, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38277167

RESUMO

Vancomycin is a glycopeptide antibiotic that for decades has been a mainstay of treatment for persistent bacterial infections. However, the spread of antibiotic resistance threatens its continued utility. In particular, vancomycin-resistant enterococci (VRE) have become a pressing clinical challenge. Vancomycin acts by binding and sequestering the intermediate Lipid II in cell-wall biosynthesis, specifically recognizing a D-alanine-D-alanine dipeptide motif within the Lipid II molecule. VRE achieve resistance by remodeling this motif to either D-alanine-D-lactate or D-alanine-D-serine; the former substitution essentially abolishes recognition by vancomycin of Lipid II, whereas the latter reduces the affinity of the antibiotic by roughly one order of magnitude. The complex of vancomycin bound to D-alanine-D-serine has been crystallized, and its 1.20 ŠX-ray crystal structure is presented here. This structure reveals that the D-alanine-D-serine ligand is bound in essentially the same position and same pose as the native D-alanine-D-alanine ligand. The serine-containing ligand appears to be slightly too large to be comfortably accommodated in this way, suggesting one possible contribution to the reduced binding affinity. In addition, two flexible hydroxyl groups - one from the serine side chain of the ligand, and the other from a glucose sugar on the antibiotic - are locked into single conformations in the complex, which is likely to contribute an unfavorable entropic component to the recognition of the serine-containing ligand.


Assuntos
Alanina , Vancomicina , Vancomicina/farmacologia , Alanina/metabolismo , Ligantes , Antibacterianos/farmacologia , Glicopeptídeos
4.
Sci Rep ; 13(1): 21997, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081985

RESUMO

Adults with sickle cell disease bear a mutation in the ß-globin gene, leading to the expression of sickle hemoglobin (HbS; α2ßS2). Adults also possess the gene for γ-globin, which is a component of fetal hemoglobin (HbF, α2γ2); however, γ-chain expression normally ceases after birth. As HbF does not form the fibers that cause the disease, pharmacological and gene-modifying interventions have attempted to either reactivate expression of the γ chain or introduce a gene encoding a modified ß chain having γ-like character. Here, we show that a single-site modification on the α chain, αPro114Arg, retards fiber formation as effectively as HbF. Because this addition to the repertoire of anti-sickling approaches acts independently of other modifications, it could be coupled with other therapies to significantly enhance their effectiveness.


Assuntos
Anemia Falciforme , Hemoglobina Fetal , Adulto , Humanos , Hemoglobina Fetal/metabolismo , Anemia Falciforme/genética , Anemia Falciforme/tratamento farmacológico , gama-Globinas/genética , gama-Globinas/metabolismo , Hemoglobina Falciforme/genética
5.
bioRxiv ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37398175

RESUMO

Vancomycin's interactions with cellular targets drive its antimicrobial activity, and also trigger expression of resistance against the antibiotic. Interaction partners for vancomycin have previously been identified using photoaffinity probes, which have proven to be useful tools for exploring vancomycin's interactome. This work seeks to develop diazirine-based vancomycin photoprobes that display enhanced specificity and bear fewer chemical modifications, as compared to previous photoprobes. Using proteins fused to vancomycin's main cell-wall target, D-alanyl-D-alanine, we use mass spectrometry to show that these photoprobes specifically label known vancomycin-binding partners within minutes. In a complementary approach, we developed a Western-blot strategy targeting the vancomycin adduct of the photoprobes, eliminating the need for affinity tags and simplifying the analysis of photolabeling reactions. Together, the probes and identification strategy provide a novel and streamlined pipeline for identifying novel vancomycin-binding proteins.

6.
bioRxiv ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503228

RESUMO

V ancomycin-resistant e nterococci (VRE) are among the most common causes of nosocomial infections, which can be challenging to treat. VRE have acquired a suite of resistance genes that function together to confer resistance to vancomycin. Expression of the resistance phenotype is controlled by the VanRS two-component system. This system senses the presence of the antibiotic, and responds by initiating transcription of resistance genes. VanS is a transmembrane sensor histidine kinase, and plays a fundamental role in antibiotic resistance by detecting vancomycin and then transducing this signal to VanR. Despite the critical role played by VanS, fundamental questions remain about its function, and in particular about how it senses vancomycin. Here, we focus on purified VanRS systems from the two most clinically prevalent forms of VRE, types A and B. We show that in a native-like membrane environment, the enzymatic activities of type-A VanS are insensitive to vancomycin, suggesting that the protein functions by an indirect mechanism that detects a downstream consequence of antibiotic activity. In contrast, the autokinase activity of type-B VanS is strongly stimulated by vancomycin. We additionally demonstrate that this effect is mediated by a direct physical interaction between the antibiotic and the type-B VanS protein, and localize the interacting region to the protein's periplasmic domain. This represents the first time that a direct sensing mechanism has been confirmed for any VanS protein. Significance Statement: When v ancomycin-resistant e nterococci (VRE) sense the presence of vancomycin, they remodel their cell walls to block antibiotic binding. This resistance phenotype is controlled by the VanS protein, a sensor histidine kinase that senses the antibiotic and signals for transcription of resistance genes. However, the mechanism by which VanS detects the antibiotic has remained unclear. Here, we show that VanS proteins from the two most common types of VRE use very different sensing mechanisms. Vancomycin does not alter the signaling activity of VanS from type-A VRE, suggesting an indirect sensing mechanism; in contrast, VanS from type-B VRE is activated by direct binding of the antibiotic. Such mechanistic insights will likely prove useful in circumventing vancomycin resistance.

7.
J Biol Chem ; 299(3): 103001, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764524

RESUMO

The VanRS two-component system regulates the resistance phenotype of vancomycin-resistant enterococci. VanS is a sensor histidine kinase that responds to the presence of vancomycin by autophosphorylating and subsequently transferring the phosphoryl group to the response regulator, VanR. The phosphotransfer activates VanR as a transcription factor, which initiates the expression of resistance genes. Structural information about VanS proteins has remained elusive, hindering the molecular-level understanding of their function. Here, we present X-ray crystal structures for the catalytic and ATP-binding (CA) domains of two VanS proteins, derived from vancomycin-resistant enterococci types A and C. Both proteins adopt the canonical Bergerat fold that has been observed for CA domains of other prokaryotic histidine kinases. We attempted to determine structures for the nucleotide-bound forms of both proteins; however, despite repeated efforts, these forms could not be crystallized, prompting us to measure the proteins' binding affinities for ATP. Unexpectedly, both CA domains displayed low affinities for the nucleotide, with KD values in the low millimolar range. Since these KD values are comparable to intracellular ATP concentrations, this weak substrate binding could reflect a way of regulating expression of the resistance phenotype.


Assuntos
Enterococos Resistentes à Vancomicina , Enterococos Resistentes à Vancomicina/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Nucleotídeos , Trifosfato de Adenosina , Antibacterianos/metabolismo
8.
ACS Chem Neurosci ; 12(20): 3898-3914, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34607428

RESUMO

Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.


Assuntos
Anestésicos Gerais , Propofol , Canais de Sódio Disparados por Voltagem , Sítios de Ligação , Canais Iônicos , Propofol/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
9.
Microorganisms ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34683347

RESUMO

Vancomycin-resistant enterococci (VRE) are a serious threat to human health, with few treatment options being available. New therapeutics are urgently needed to relieve the health and economic burdens presented by VRE. A potential target for new therapeutics is the VanRS two-component system, which regulates the expression of vancomycin resistance in VRE. VanS is a sensor histidine kinase that detects vancomycin and in turn activates VanR; VanR is a response regulator that, when activated, directs expression of vancomycin-resistance genes. This review of VanRS examines how the expression of vancomycin resistance is regulated, and provides an update on one of the field's most pressing questions: How does VanS sense vancomycin?

10.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1027-1039, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342276

RESUMO

Vancomycin has historically been used as a last-resort treatment for serious bacterial infections. However, vancomycin resistance has become widespread in certain pathogens, presenting a serious threat to public health. Resistance to vancomycin is conferred by a suite of resistance genes, the expression of which is controlled by the VanR-VanS two-component system. VanR is the response regulator in this system; in the presence of vancomycin, VanR accepts a phosphoryl group from VanS, thereby activating VanR as a transcription factor and inducing expression of the resistance genes. This paper presents the X-ray crystal structures of full-length VanR from Streptomyces coelicolor in both the inactive and activated states at resolutions of 2.3 and 2.0 Å, respectively. Comparison of the two structures illustrates that phosphorylation of VanR is accompanied by a disorder-to-order transition of helix 4, which lies within the receiver domain of the protein. This transition generates an interface that promotes dimerization of the receiver domain; dimerization in solution was verified using analytical ultracentrifugation. The inactive conformation of the protein does not appear intrinsically unable to bind DNA; rather, it is proposed that in the activated form DNA binding is enhanced by an avidity effect contributed by the receiver-domain dimerization.


Assuntos
Proteínas de Bactérias/metabolismo , Streptomyces coelicolor/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Fosforilação , Streptomyces coelicolor/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vancomicina/farmacologia
11.
Protein Sci ; 30(6): 1235-1246, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896065

RESUMO

Maltose binding protein (MBP) is used in recombinant protein expression as an affinity and solubility tag. The monoclonal antibody B48 binds MBP tightly and has no cross-reactivity to other proteins in an Escherichia coli lysate. This high level of specificity suggested that MBP contains an epitope that could prove useful as a purification and visualization tag for proteins expressed in E. coli. To discover the MBP epitope, a co-crystal structure was determined for MBP bound to its antibody and four amino acids of MBP were identified as critical for the binding interaction. Fusions of various fragments of MBP to the glutathione S-transferase protein were engineered in order to identify the smallest fragment still recognized by the α-MBP antibody. Stabilization of the epitope via mutational engineering resulted in a minimized 14 amino-acid tag.


Assuntos
Epitopos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas Ligantes de Maltose/química , Cristalografia por Raios X , Epitopos/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Ligantes de Maltose/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
12.
Biophys J ; 117(4): 751-766, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378315

RESUMO

Available experimental techniques cannot determine high-resolution three-dimensional structures of membrane proteins under a transmembrane voltage. Hence, the mechanism by which voltage-gated cation channels couple conformational changes within the four voltage sensor domains, in response to either depolarizing or polarizing transmembrane voltages, to opening or closing of the pore domain's ion channel remains unresolved. Single-membrane specimens, composed of a phospholipid bilayer containing a vectorially oriented voltage-gated K+ channel protein at high in-plane density tethered to the surface of an inorganic multilayer substrate, were developed to allow the application of transmembrane voltages in an electrochemical cell. Time-resolved neutron reflectivity experiments, enhanced by interferometry enabled by the multilayer substrate, were employed to provide directly the low-resolution profile structures of the membrane containing the vectorially oriented voltage-gated K+ channel for the activated, open and deactivated, closed states of the channel under depolarizing and hyperpolarizing transmembrane voltages applied cyclically. The profile structures of these single membranes were dominated by the voltage-gated K+ channel protein because of the high in-plane density. Importantly, the use of neutrons allowed the determination of the voltage-dependent changes in both the profile structure of the membrane and the distribution of water within the profile structure. These two key experimental results were then compared to those predicted by three computational modeling approaches for the activated, open and deactivated, closed states of three different voltage-gated K+ channels in hydrated phospholipid bilayer membrane environments. Of the three modeling approaches investigated, only one state-of-the-art molecular dynamics simulation that directly predicted the response of a voltage-gated K+ channel within a phospholipid bilayer membrane to applied transmembrane voltages by utilizing very long trajectories was found to be in agreement with the two key experimental results provided by the time-resolved neutron interferometry experiments.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Interferometria , Bicamadas Lipídicas/química , Potenciais da Membrana , Simulação de Dinâmica Molecular , Nêutrons , Domínios Proteicos
13.
Structure ; 27(5): 794-805.e4, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905673

RESUMO

Hydrogen sulfide (H2S) is a gasotransmitter exhibiting pivotal functions in diverse biological processes, including activation of multiple cardioprotective pathways. Sulfide:quinone oxidoreductase (SQOR) is an integral membrane flavoprotein that catalyzes the first step in the mitochondrial metabolism of H2S. As such, it plays a critical role in controlling physiological levels of the gasotransmitter and has attracted keen interest as a potential drug target. We report the crystal structure of human SQOR, unraveling the molecular basis for the enzyme's ability to catalyze sulfane sulfur transfer reactions with structurally diverse acceptors. We demonstrate that human SQOR contains unique features: an electropositive surface depression implicated as a binding site for sulfane sulfur acceptors and postulated to funnel negatively charged substrates to a hydrophilic H2S-oxidizing active site, which is connected to a hydrophobic internal tunnel that binds coenzyme Q. These findings support a proposed model for catalysis and open the door for structure-based drug design.


Assuntos
Sulfeto de Hidrogênio/química , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxigênio/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/análogos & derivados , Cisteína/química , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína
14.
PLoS One ; 14(1): e0210627, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30677074

RESUMO

VanS is a membrane-bound sensor histidine kinase responsible for sensing vancomycin and activating transcription of vancomycin-resistance genes. In the presence of vancomycin, VanS phosphorylates the transcription factor VanR, converting it to its transcriptionally active form. In the absence of vancomycin, VanS dephosphorylates VanR, thereby maintaining it in a transcriptionally inactive state. To date, the mechanistic details of how vancomycin modulates VanS activity have remained elusive. We have therefore studied these details in an in vitro system, using the full-length VanS and VanR proteins responsible for type-A vancomycin resistance in enterococci. Both detergent- and amphipol-solubilized VanSA display all the enzymatic activities expected for a sensor histidine kinase, with amphipol reconstitution providing a marked boost in overall activity relative to detergent solubilization. A putative constitutively activated VanSA mutant (T168K) was constructed and purified, and was found to exhibit the expected reduction in phosphatase activity, providing confidence that detergent-solubilized VanSA behaves in a physiologically relevant manner. In both detergent and amphipol solutions, VanSA's enzymatic activities were found to be insensitive to vancomycin, even at levels many times higher than the antibiotic's minimum inhibitory concentration. This result argues against direct activation of VanSA via formation of a binary antibiotic-kinase complex, suggesting instead that either additional factors are required to form a functional signaling complex, or that activation does not require direct interaction with the antibiotic.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Histidina Quinase/isolamento & purificação , Histidina Quinase/metabolismo , Vancomicina/farmacologia , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Resistência a Vancomicina
15.
J Struct Biol X ; 3: 100011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32647816

RESUMO

The MJD family of human deubiquitinating enzymes contains four members: Ataxin-3, the ataxin-3-like protein (AT3L), Josephin-1, and Josephin-2. All share a conserved catalytic unit known as the Josephin domain. Ataxin-3 and AT3L also contain extensive regulatory regions that modulate their functions, whereas Josephins-1 and -2 are substantially smaller, containing only the Josephin domain. To gain insight into how these minimal Josephins differ from their larger relatives, we determined the 2.3 ŠX-ray crystal structure of human Josephin-2 and probed the enzyme's substrate specificity. Several large disordered loops are seen in the structure, suggesting a highly dynamic enzyme. Josephin-2 lacks several allosteric sites found in ataxin-3, but its structure suggests potential regulation via ubiquitination of a loop adjoining the active site. The enzyme preferentially recognizes substrates containing K11, K48, and K63 linkages, pointing toward a possible role in maintenance of protein quality control.

16.
Methods Enzymol ; 603: 3-20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29673532

RESUMO

Anesthetics interact with a broad range of different targets, including both soluble and membrane-bound proteins. Understanding these interactions at the molecular level requires detailed structural knowledge of anesthetic-protein complexes, and one of the most productive routes to such knowledge is X-ray crystallography. In this chapter we discuss the application of this technique to the analysis of complexes of anesthetics with soluble proteins. The model protein apoferritin is highlighted, and protocols are presented for obtaining diffraction-quality crystals of this protein in complex with different general anesthetics.


Assuntos
Anestésicos Inalatórios/química , Anestésicos Intravenosos/química , Apoferritinas/química , Cristalização/métodos , Isoflurano/química , Propofol/química , Animais , Apoferritinas/isolamento & purificação , Sítios de Ligação , Cristalização/instrumentação , Cristalografia por Raios X , Cavalos , Humanos , Polietilenoglicóis/química , Ligação Proteica , Solubilidade , Baço/química
17.
Mol Neurobiol ; 55(2): 1692-1702, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28204960

RESUMO

Inhalational general anesthetics, such as sevoflurane and isoflurane, modulate a subset of brain Kv1 potassium channels. However, the Kv1.2 channel is resistant to propofol, a commonly used intravenous alkylphenol anesthetic. We hypothesize that propofol binds to a presumed pocket involving the channel's S4-S5 linker, but functional transduction is poor and, therefore, propofol efficacy is low. To test this hypothesis, we used a photoactive propofol analog (meta-aziPropofol = AziPm) to directly probe binding and electrophysiological and mutational analyses in Xenopus oocytes to probe function. We find that AziPm photolabels L321 in the S4-S5 linker of both the wild-type Kv1.2 and a mutant Kv1.2 (G329 T) with a novel gating phenotype. Furthermore, whereas propofol does not significantly modulate Kv1.2 WT but robustly potentiates Kv1.2 G329T, AziPm inhibits Kv1.2 WT and also potentiates Kv1.2 G329T. Kv1.2 modulation by AziPm was abolished by two mutations that decreased hydrophobicity at L321 (L321A and L321F), confirming the specific significance of the S4-S5 linker in the mechanism of general anesthetic modulation. Since AziPm binds to Kv1.2 G329T and shares the propofol ability to potentiate this mutant, the parent propofol likely also binds to the Kv1.2 channel. However, binding and alkylphenol-induced transduction are seemingly sensitive to the conformation of the S4-S5 linker site (altered by G329T) and subtle differences in the chemical structures of propofol and AziPm. Overall, the results are consistent with a mechanism of general anesthetic modulation that depends on the complementarity of necessary ligand binding and permissive ion channel conformations that dictate modulation and efficacy.


Assuntos
Anestésicos Inalatórios/farmacologia , Canal de Potássio Kv1.2/metabolismo , Oócitos/efeitos dos fármacos , Propofol/farmacologia , Animais , Sítios de Ligação , Oócitos/metabolismo , Xenopus
18.
J Biol Chem ; 292(45): 18392-18407, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28939772

RESUMO

p97 is an essential ATPase associated with various cellular activities (AAA+) that functions as a segregase in diverse cellular processes, including the maintenance of proteostasis. p97 interacts with different cofactors that target it to distinct pathways; an important example is the deubiquitinase ataxin3, which collaborates with p97 in endoplasmic reticulum-associated degradation. However, the molecular details of this interaction have been unclear. Here, we characterized the binding of ataxin3 to p97, showing that ataxin3 binds with low-micromolar affinity to both wild-type p97 and mutants linked to degenerative disorders known as multisystem proteinopathy 1 (MSP1); we further showed that the stoichiometry of binding is one ataxin3 molecule per p97 hexamer. We mapped the binding determinants on each protein, demonstrating that ataxin3's p97/VCP-binding motif interacts with the inter-lobe cleft in the N-domain of p97. We also probed the nucleotide dependence of this interaction, confirming that ataxin3 and p97 associate in the presence of ATP and in the absence of nucleotide, but not in the presence of ADP. Our experiments suggest that an ADP-driven downward movement of the p97 N-terminal domain dislodges ataxin3 by inducing a steric clash between the D1-domain and ataxin3's C terminus. In contrast, MSP1 mutants of p97 bind ataxin3 irrespective of their nucleotide state, indicating a failure by these mutants to translate ADP binding into a movement of the N-terminal domain. Our model provides a mechanistic explanation for how nucleotides regulate the p97-ataxin3 interaction and why atypical cofactor binding is observed with MSP1 mutants.


Assuntos
Ataxina-3/metabolismo , Coenzimas/metabolismo , Miopatias Distais/metabolismo , Modelos Moleculares , Deficiências na Proteostase/metabolismo , Proteínas Repressoras/metabolismo , Proteína com Valosina/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Ataxina-3/química , Ataxina-3/genética , Sítios de Ligação , Ligação Competitiva , Coenzimas/química , Coenzimas/genética , Cristalografia por Raios X , Bases de Dados de Proteínas , Miopatias Distais/enzimologia , Miopatias Distais/genética , Humanos , Microscopia Eletrônica de Transmissão , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Deficiências na Proteostase/enzimologia , Deficiências na Proteostase/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteína com Valosina/química , Proteína com Valosina/genética
19.
Methods Mol Biol ; 1635: 169-193, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28755369

RESUMO

Membrane proteins are difficult to manipulate and stabilize once they have been removed from their native membranes. However, despite these difficulties, successes in membrane-protein structure determination have continued to accumulate for over two decades, thanks to advances in chemistry and technology. Many of these advances have resulted from efforts focused on protein engineering, high-throughput expression, and development of detergent screens, all with the aim of enhancing protein stability for biochemistry and biophysical studies. In contrast, considerably less work has been done to decipher the basic mechanisms that underlie the structure of protein-detergent complexes and to describe the influence of detergent structure on stabilization and crystallization. These questions can be addressed using scattering techniques (employing light, X-rays, and/or neutrons), which are suitable to describe the structure and conformation of macromolecules in solution, as well as to assess weak interactions between particles, both of which are clearly germane to crystallization. These techniques can be used either in batch modes or coupled to size-exclusion chromatography, and offer the potential to describe the conformation of a detergent-solubilized membrane protein and to quantify and model detergent bound to the protein in order to optimize crystal packing. We will describe relevant techniques and present examples of scattering experiments, which allow one to explore interactions between micelles and between membrane protein complexes, and relate these interactions to membrane protein crystallization.


Assuntos
Detergentes/química , Proteínas de Membrana/química , Cromatografia em Gel , Cristalografia por Raios X , Micelas , Conformação Proteica , Estabilidade Proteica , Espalhamento de Radiação
20.
ACS Chem Biol ; 12(5): 1353-1362, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28333442

RESUMO

Sevoflurane is a commonly used inhaled general anesthetic. Despite this, its mechanism of action remains largely elusive. Compared to other anesthetics, sevoflurane exhibits distinct functional activity. In particular, sevoflurane is a positive modulator of voltage-gated Shaker-related potassium channels (Kv1.x), which are key regulators of action potentials. Here, we report the synthesis and validation of azisevoflurane, a photoaffinity ligand for the direct identification of sevoflurane binding sites in the Kv1.2 channel. Azisevoflurane retains major sevoflurane protein binding interactions and pharmacological properties within in vivo models. Photoactivation of azisevoflurane induces adduction to amino acid residues that accurately reported sevoflurane protein binding sites in model proteins. Pharmacologically relevant concentrations of azisevoflurane analogously potentiated wild-type Kv1.2 and the established mutant Kv1.2 G329T. In wild-type Kv1.2 channels, azisevoflurane photolabeled Leu317 within the internal S4-S5 linker, a vital helix that couples the voltage sensor to the pore region. A residue lining the same binding cavity was photolabeled by azisevoflurane and protected by sevoflurane in the Kv1.2 G329T. Mutagenesis of Leu317 in WT Kv1.2 abolished sevoflurane voltage-dependent positive modulation. Azisevoflurane additionally photolabeled a second distinct site at Thr384 near the external selectivity filter in the Kv1.2 G329T mutant. The identified sevoflurane binding sites are located in critical regions involved in gating of Kv channels and related ion channels. Azisevoflurane has thus emerged as a new tool to discover inhaled anesthetic targets and binding sites and investigate contributions of these targets to general anesthesia.


Assuntos
Canal de Potássio Kv1.2/metabolismo , Éteres Metílicos/metabolismo , Marcadores de Fotoafinidade , Anestésicos Inalatórios , Animais , Sítios de Ligação , Humanos , Ativação do Canal Iônico , Canal de Potássio Kv1.2/genética , Ligantes , Mutagênese Sítio-Dirigida , Oócitos , Sevoflurano , Superfamília Shaker de Canais de Potássio , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...