Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLOS Glob Public Health ; 2(12): e0000704, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962792

RESUMO

The scale of data produced during the SARS-CoV-2 pandemic has been unprecedented, with more than 13 million sequences shared publicly at the time of writing. This wealth of sequence data provides important context for interpreting local outbreaks. However, placing sequences of interest into national and international context is difficult given the size of the global dataset. Often outbreak investigations and genomic surveillance efforts require running similar analyses again and again on the latest dataset and producing reports. We developed civet (cluster investigation and virus epidemiology tool) to aid these routine analyses and facilitate virus outbreak investigation and surveillance. Civet can place sequences of interest in the local context of background diversity, resolving the query into different 'catchments' and presenting the phylogenetic results alongside metadata in an interactive, distributable report. Civet can be used on a fine scale for clinical outbreak investigation, for local surveillance and cluster discovery, and to routinely summarise the virus diversity circulating on a national level. Civet reports have helped researchers and public health bodies feedback genomic information in the appropriate context within a timeframe that is useful for public health.

2.
Nat Commun ; 12(1): 5705, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588460

RESUMO

COVID-19 transmission rates are often linked to locally circulating strains of SARS-CoV-2. Here we describe 203 SARS-CoV-2 whole genome sequences analyzed from strains circulating in Rwanda from May 2020 to February 2021. In particular, we report a shift in variant distribution towards the emerging sub-lineage A.23.1 that is currently dominating. Furthermore, we report the detection of the first Rwandan cases of the B.1.1.7 and B.1.351 variants of concern among incoming travelers tested at Kigali International Airport. To assess the importance of viral introductions from neighboring countries and local transmission, we exploit available individual travel history metadata to inform spatio-temporal phylogeographic inference, enabling us to take into account infections from unsampled locations. We uncover an important role of neighboring countries in seeding introductions into Rwanda, including those from which no genomic sequences were available. Our results highlight the importance of systematic genomic surveillance and regional collaborations for a durable response towards combating COVID-19.


Assuntos
COVID-19/virologia , Genoma Viral/genética , SARS-CoV-2/genética , Doença Relacionada a Viagens , Adulto , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/transmissão , Monitoramento Epidemiológico , Feminino , Humanos , Masculino , Filogenia , Filogeografia , RNA Viral/genética , RNA Viral/isolamento & purificação , Ruanda/epidemiologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade , Sequenciamento Completo do Genoma
5.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32764827

RESUMO

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Assuntos
Genoma Viral , Doenças dos Primatas/virologia , Febre Amarela/veterinária , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Zoonoses/virologia , Animais , Brasil/epidemiologia , Surtos de Doenças , Genômica , Humanos , Filogenia , Filogeografia , Doenças dos Primatas/epidemiologia , Doenças dos Primatas/transmissão , Primatas/virologia , Febre Amarela/epidemiologia , Febre Amarela/transmissão , Vírus da Febre Amarela/classificação , Vírus da Febre Amarela/isolamento & purificação , Zoonoses/epidemiologia , Zoonoses/transmissão
6.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32571797

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus first identified in December 2019. Notable features that make SARS-CoV-2 distinct from most other previously identified betacoronaviruses include a receptor binding domain and a unique insertion of 12 nucleotides or 4 amino acids (PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells; however, the deletion of QTQTN may restrict late-phase viral replication. The deletion of QTQTN was detected in 3 of 68 clinical samples and 12 of 24 in vitro-isolated viruses, while the deletion of NSPRRAR was identified in 3 in vitro-isolated viruses. Our data indicate that (i) there may be distinct selection pressures on SARS-CoV-2 replication or infection in vitro and in vivo; (ii) an efficient mechanism for deleting this region from the viral genome may exist, given that the deletion variant is commonly detected after two rounds of cell passage; and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed during virus replication in vitro These findings provide information to aid further investigation of SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant observed here.IMPORTANCE The spike protein determines the infectivity and host range of coronaviruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has two unique features in its spike protein, the receptor binding domain and an insertion of 12 nucleotides at the S1/S2 boundary resulting in a furin-like cleavage site. Here, we identified two deletion variants of SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN), and we investigated these deletions in cell isolates and clinical samples. The absence of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells. Our data indicate the PRRAR sequence and the flanking QTQTN sequence are not fixed in vitro; thus, there appears to be distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo Further investigation of the mechanism of generating these deletion variants and their infectivity in different animal models would improve our understanding of the origin and evolution of this virus.


Assuntos
Betacoronavirus/genética , Betacoronavirus/metabolismo , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Furina/metabolismo , Genoma Viral , Especificidade de Hospedeiro , Cinética , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Conformação Proteica , SARS-CoV-2 , Análise de Sequência , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Replicação Viral
7.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32359424

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Teorema de Bayes , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem
8.
Mem. Inst. Oswaldo Cruz ; 115: e190423, 2020. graf
Artigo em Inglês | LILACS, Sec. Est. Saúde SP | ID: biblio-1135264

RESUMO

BACKGROUND Despite efforts to mitigate the impact of dengue virus (DENV) epidemics, the virus remains a public health problem in tropical and subtropical regions around the world. Most DENV cases in the Americas between January and July 2019 were reported in Brazil. São Paulo State in the southeast of Brazil has reported nearly half of all DENV infections in the country. OBJECTIVES To understand the origin and dynamics of the 2019 DENV outbreak. METHODS Here using portable nanopore sequencing we generated20 new DENV genome sequences from viremic patients with suspected dengue infection residing in two of the most-affected municipalities of São Paulo State, Araraquara and São José do Rio Preto. We conducted a comprehensive phylogenetic analysis with 1,630 global DENV strains to better understand the evolutionary history of the DENV lineages that currently circulate in the region. FINDINGS The new outbreak strains were classified as DENV2 genotype III (American/Asian genotype). Our analysis shows that the 2019 outbreak is the result of a novel DENV lineage that was recently introduced to Brazil from the Caribbean region. Dating phylogeographic analysis suggests that DENV2-III BR-4 was introduced to Brazil in or around early 2014, possibly from the Caribbean region. MAIN CONCLUSIONS Our study describes the early detection of a newly introduced and rapidly-expanding DENV2 virus lineage in Brazil.


Assuntos
Humanos , Variação Genética , Genômica , Dengue/virologia , Vírus da Dengue/genética , Filogenia , Brasil , RNA Viral/genética , Genótipo
9.
Euro Surveill ; 23(12)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29589579

RESUMO

On 11 May 2015, the Dubréka prefecture, Guinea, reported nine laboratory-confirmed cases of Ebola virus disease (EVD). None could be epidemiologically linked to cases previously reported in the prefecture. We describe the epidemiological and molecular investigations of this event. We used the Dubréka EVD registers and the Ebola treatment centre's (ETC) records to characterise chains of transmission. Real-time field Ebola virus sequencing was employed to support epidemiological results. An epidemiological cluster of 32 cases was found, of which 27 were laboratory confirmed, 24 were isolated and 20 died. Real-time viral sequencing on 12 cases demonstrated SL3 lineage viruses with sequences differing by one to three nt inside a single phylogenetic cluster. For isolated cases, the average time between symptom onset and ETC referral was 2.8 days (interquartile range (IQR): 1-4). The average time between sample collection and molecular results' availability was 3 days (IQR: 2-5). In an area with scarce resources, the genetic characterisation supported the outbreak investigations in real time, linking cases where epidemiological investigation was limited and reassuring that the responsible strain was already circulating in Guinea. We recommend coupling thorough epidemiological and genomic investigations to control EVD clusters.


Assuntos
DNA Viral/genética , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/transmissão , Busca de Comunicante , Surtos de Doenças/prevenção & controle , Genômica , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Humanos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
10.
PLoS One ; 12(2): e0172605, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222161

RESUMO

BACKGROUND/AIMS: Studying the gut microbiota in unaffected relatives of people with Crohn's disease (CD) may advance our understanding of the role of bacteria in disease aetiology. METHODS: Faecal microbiota composition (16S rRNA gene sequencing), genetic functional capacity (shotgun metagenomics) and faecal short chain fatty acids (SCFA) were compared in unaffected adult relatives of CD children (CDR, n = 17) and adult healthy controls, unrelated to CD patients (HUC, n = 14). The microbiota characteristics of 19 CD children were used as a benchmark of CD 'dysbiosis'. RESULTS: The CDR microbiota was less diverse (p = 0.044) than that of the HUC group. Local contribution of ß-diversity analysis showed no difference in community structure between the CDR and HUC groups. Twenty one of 1,243 (1.8%) operational taxonomic units discriminated CDR from HUC. The metagenomic functional capacity (p = 0.207) and SCFA concentration or pattern were similar between CDR and HUC (p>0.05 for all SCFA). None of the KEGG metabolic pathways were different between these two groups. Both of these groups (HUC and CDR) had a higher microbiota α-diversity (CDR, p = 0.026 and HUC, p<0.001) with a community structure (ß-diversity) distinct from that of children with CD. CONCLUSIONS: While some alterations were observed, a distinct microbial 'dysbiosis', characteristic of CD patients, was not observed in their unaffected, genetically linked kindred.


Assuntos
Doença de Crohn/microbiologia , Disbiose/microbiologia , Saúde da Família , Microbioma Gastrointestinal , Adolescente , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Criança , Doença de Crohn/genética , Disbiose/etiologia , Disbiose/genética , Ácidos Graxos Voláteis/análise , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Complexo Antígeno L1 Leucocitário/análise , Masculino , Redes e Vias Metabólicas , Metagenômica , Pais , Ribotipagem , Irmãos
11.
BMC Res Notes ; 9: 365, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27456340

RESUMO

BACKGROUND: The effect that traditional and modern DNA extraction methods have on applications to study the role of gut microbiota in health and disease is a topic of current interest. Genomic DNA was extracted from three faecal samples and one probiotic capsule using three popular methods; chaotropic (CHAO) method, phenol/chloroform (PHEC) extraction, proprietary kit (QIAG). The performance of each of these methods on DNA yield and quality, microbiota composition using quantitative PCR, deep sequencing of the 16S rRNA gene, and sequencing analysis pipeline was evaluated. RESULTS: The CHAO yielded the highest and the QIAG kit the lowest amount of double-stranded DNA, but the purity of isolated nucleic acids was better for the latter method. The CHAO method yielded a higher concentration of bacterial taxa per mass (g) of faeces. Sequencing coverage was higher in CHAO method but a higher proportion of the initial sequencing reads were retained for assignments to operational taxonomic unit (OTU) in the QIAG kit compared to the other methods. The QIAG kit appeared to have longer trimmed reads and shorter regions of worse quality than the other two methods. A distinct separation of α-diversity indices between different DNA extraction methods was not observed. When compositional dissimilarities between samples were explored, a strong separation was observed according to sample type. The effect of the extraction method was either marginal (Bray-Curtis distance) or none (unweighted Unifrac distance). Taxon membership and abundance in each sample was independent of the DNA extraction method used. CONCLUSIONS: We have benchmarked several DNA extraction methods commonly used in gut microbiota research and their differences depended on the downstream applications intended for use. Caution should be paid when the intention is to pool and analyse samples or data from studies which have used different DNA extraction methods.


Assuntos
Código de Barras de DNA Taxonômico/normas , DNA Bacteriano/isolamento & purificação , DNA/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , RNA Ribossômico 16S/genética , Benchmarking , Clorofórmio/química , DNA/genética , DNA Bacteriano/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microextração em Fase Líquida/métodos , Fenol/química , Reação em Cadeia da Polimerase em Tempo Real/normas
13.
Am J Gastroenterol ; 110(12): 1718-29; quiz 1730, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26526081

RESUMO

OBJECTIVES: Exploring associations between the gut microbiota and colonic inflammation and assessing sequential changes during exclusive enteral nutrition (EEN) may offer clues into the microbial origins of Crohn's disease (CD). METHODS: Fecal samples (n=117) were collected from 23 CD and 21 healthy children. From CD children fecal samples were collected before, during EEN, and when patients returned to their habitual diets. Microbiota composition and functional capacity were characterized using sequencing of the 16S rRNA gene and shotgun metagenomics. RESULTS: Microbial diversity was lower in CD than controls before EEN (P=0.006); differences were observed in 36 genera, 141 operational taxonomic units (OTUs), and 44 oligotypes. During EEN, the microbial diversity of CD children further decreased, and the community structure became even more dissimilar than that of controls. Every 10 days on EEN, 0.6 genus diversity equivalents were lost; 34 genera decreased and one increased during EEN. Fecal calprotectin correlated with 35 OTUs, 14 of which accounted for 78% of its variation. OTUs that correlated positively or negatively with calprotectin decreased during EEN. The microbiota of CD patients had a broader functional capacity than healthy controls, but diversity decreased with EEN. Genes involved in membrane transport, sulfur reduction, and nutrient biosynthesis differed between patients and controls. The abundance of genes involved in biotin (P=0.005) and thiamine biosynthesis decreased (P=0.017), whereas those involved in spermidine/putrescine biosynthesis (P=0.031), or the shikimate pathway (P=0.058), increased during EEN. CONCLUSIONS: Disease improvement following treatment with EEN is associated with extensive modulation of the gut microbiome.


Assuntos
Doença de Crohn/genética , Doença de Crohn/microbiologia , Nutrição Enteral , Fezes , Metagenoma , Microbiota , Adolescente , Criança , Doença de Crohn/sangue , Doença de Crohn/metabolismo , Fezes/química , Feminino , Humanos , Complexo Antígeno L1 Leucocitário/metabolismo , Modelos Lineares , Masculino , Metagenômica/métodos , Microbiota/genética , RNA Ribossômico 16S , Análise de Sequência de RNA
14.
Front Microbiol ; 6: 1036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26483767

RESUMO

The International Pseudomonas aeruginosa Consortium is sequencing over 1000 genomes and building an analysis pipeline for the study of Pseudomonas genome evolution, antibiotic resistance and virulence genes. Metadata, including genomic and phenotypic data for each isolate of the collection, are available through the International Pseudomonas Consortium Database (http://ipcd.ibis.ulaval.ca/). Here, we present our strategy and the results that emerged from the analysis of the first 389 genomes. With as yet unmatched resolution, our results confirm that P. aeruginosa strains can be divided into three major groups that are further divided into subgroups, some not previously reported in the literature. We also provide the first snapshot of P. aeruginosa strain diversity with respect to antibiotic resistance. Our approach will allow us to draw potential links between environmental strains and those implicated in human and animal infections, understand how patients become infected and how the infection evolves over time as well as identify prognostic markers for better evidence-based decisions on patient care.

15.
J Antimicrob Chemother ; 70(8): 2241-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953808

RESUMO

OBJECTIVES: Biocides are widely used to prevent infection. We aimed to determine whether exposure of Salmonella to various biocides could act as a driver of antibiotic resistance. METHODS: Salmonella enterica serovar Typhimurium was exposed to four biocides with differing modes of action. Antibiotic-resistant mutants were selected during exposure to all biocides and characterized phenotypically and genotypically to identify mechanisms of resistance. RESULTS: All biocides tested selected MDR mutants with decreased antibiotic susceptibility; these occurred randomly throughout the experiments. Mutations that resulted in de-repression of the multidrug efflux pump AcrAB-TolC were seen in MDR mutants. A novel mutation in rpoA was also selected and contributed to the MDR phenotype. Other mutants were highly resistant to both quinolone antibiotics and the biocide triclosan. CONCLUSIONS: This study shows that exposure of bacteria to biocides can select for antibiotic-resistant mutants and this is mediated by clinically relevant mechanisms of resistance prevalent in human pathogens.


Assuntos
Desinfetantes/farmacologia , Farmacorresistência Bacteriana , Evolução Molecular , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Seleção Genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Mutação , Fenótipo
16.
F1000Res ; 4: 1074, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26998227

RESUMO

Nanopore sequencing was recently made available to users in the form of the Oxford Nanopore MinION. Released to users through an early access programme, the MinION is made unique by its tiny form factor and ability to generate very long sequences from single DNA molecules. The platform is undergoing rapid evolution with three distinct nanopore types and five updates to library preparation chemistry in the last 18 months. To keep pace with the rapid evolution of this sequencing platform, and to provide a space where new analysis methods can be openly discussed, we present a new F1000Research channel devoted to updates to and analysis of nanopore sequence data.

17.
Nat Commun ; 5: 4780, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25179232

RESUMO

Chronic bacterial infections are a key feature of a variety of lung conditions. The opportunistic bacterium, Pseudomonas aeruginosa, is extremely skilled at both colonizing and persisting in the airways of patients with lung damage. It has been suggested that the upper airways (including the paranasal sinuses and nasopharynx) play an important role as a silent reservoir of bacteria. Over time, P. aeruginosa can adapt to its niche, leading to increased resistance in the face of the immune system and intense therapy regimes. Here we describe a mouse inhalation model of P. aeruginosa chronic infection that can be studied for at least 28 days. We present evidence for adaptation in vivo, in terms of genotype and phenotype including antibiotic resistance. Our data suggest that there is persistence in the upper respiratory tract and that this is key in the establishment of lung infection. This model provides a unique platform for studying evolutionary dynamics and therapeutics.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Polimorfismo de Nucleotídeo Único , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Administração por Inalação , Administração Intranasal , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Feminino , Genótipo , Interações Hospedeiro-Patógeno , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Nasofaringe/microbiologia , Nasofaringe/patologia , Seios Paranasais/microbiologia , Seios Paranasais/patologia , Fenótipo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade
19.
PLoS One ; 8(12): e83158, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349448

RESUMO

Periodontal disease is the most widespread oral disease in dogs which if left untreated results in significant pain to the pet and loss of dentition. The objective of this study was to identify bacterial species in canine plaque that are significantly associated with health, gingivitis and mild periodontitis (<25% attachment loss). In this survey subgingival plaque samples were collected from 223 dogs with healthy gingiva, gingivitis and mild periodontitis with 72 to 77 samples per health status. DNA was extracted from the plaque samples and subjected to PCR amplification of the V1-V3 region of the 16S rDNA. Pyrosequencing of the PCR amplicons identified a total of 274 operational taxonomic units after bioinformatic and statistical analysis. Porphyromonas was the most abundant genus in all disease stages, particularly in health along with Moraxella and Bergeyella. Peptostreptococcus, Actinomyces, and Peptostreptococcaceae were the most abundant genera in mild periodontitis. Logistic regression analysis identified species from each of these genera that were significantly associated with health, gingivitis or mild periodontitis. Principal component analysis showed distinct community profiles in health and disease. The species identified show some similarities with health and periodontal disease in humans but also major differences. In contrast to human, healthy canine plaque was found to be dominated by Gram negative bacterial species whereas Gram positive anaerobic species predominate in disease. The scale of this study surpasses previously published research and enhances our understanding of the bacterial species present in canine subgingival plaque and their associations with health and early periodontal disease.


Assuntos
Bactérias , Doenças do Cão , Gengiva/microbiologia , Gengivite , Periodontite , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos Transversais , DNA Bacteriano/genética , DNA Ribossômico/genética , Doenças do Cão/genética , Doenças do Cão/microbiologia , Cães , Feminino , Gengivite/genética , Gengivite/microbiologia , Gengivite/veterinária , Humanos , Masculino , Periodontite/genética , Periodontite/microbiologia , Periodontite/veterinária , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...