Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Nat Commun ; 13(1): 5956, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36220814

RESUMO

HIV-1 eradication is hindered by viral persistence in cell reservoirs, established not only in circulatory CD4+T-cells but also in tissue-resident macrophages. The nature of macrophage reservoirs and mechanisms of persistence despite combined anti-retroviral therapy (cART) remain unclear. Using genital mucosa from cART-suppressed HIV-1-infected individuals, we evaluated the implication of macrophage immunometabolic pathways in HIV-1 persistence. We demonstrate that ex vivo, macrophage tissue reservoirs contain transcriptionally active HIV-1 and viral particles accumulated in virus-containing compartments, and harbor an inflammatory IL-1R+S100A8+MMP7+M4-phenotype prone to glycolysis. Reactivation of infectious virus production and release from these reservoirs in vitro are induced by the alarmin S100A8, an endogenous factor produced by M4-macrophages and implicated in "sterile" inflammation. This process metabolically depends on glycolysis. Altogether, inflammatory M4-macrophages form a major tissue reservoir of replication-competent HIV-1, which reactivate viral production upon autocrine/paracrine S100A8-mediated glycolytic stimulation. This HIV-1 persistence pathway needs to be targeted in future HIV eradication strategies.


Assuntos
Infecções por HIV , HIV-1 , Alarminas , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Calgranulina A , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Humanos , Macrófagos , Metaloproteinase 7 da Matriz/farmacologia , Metaloproteinase 7 da Matriz/uso terapêutico , Latência Viral , Replicação Viral
2.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266350

RESUMO

Addition of hydrogen peroxide (H2O2) is a method commonly used to trigger cellular oxidative stress. However, the doses used (often hundreds of micromolar) are disproportionally high with regard to physiological oxygen concentration (low micromolar). In this study using polarographic measurement of oxygen concentration in cellular suspensions we show that H2O2 addition results in O2 release as expected from catalase reaction. This reaction is fast enough to, within seconds, decrease drastically H2O2 concentration and to annihilate it within a few minutes. Firstly, this is likely to explain why recording of oxidative damage requires the high concentrations found in the literature. Secondly, it illustrates the potency of intracellular antioxidant (H2O2) defense. Thirdly, it complicates the interpretation of experiments as subsequent observations might result from high/transient H2O2 exposure and/or from the diverse possible consequences of the O2 release.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Aconitato Hidratase/metabolismo , Respiração Celular , Quebras de DNA , Ativação Enzimática , Humanos , Modelos Biológicos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
3.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003371

RESUMO

Murine fibroblasts deficient in mitochondria respiratory complexes III (CIII) and IV (CIV) produced by either the ablation of Uqcrfs1 (encoding for Rieske iron sulfur protein, RISP) or Cox10 (encoding for protoheme IX farnesyltransferase, COX10) genes, respectively, showed a pleiotropic effect in complex I (CI). Exposure to 1-5% oxygen increased the levels of CI in both RISP and COX10 KO fibroblasts. De novo assembly of the respiratory complexes occurred at a faster rate and to higher levels in 1% oxygen compared to normoxia in both RISP and COX10 KO fibroblasts. Hypoxia did not affect the levels of assembly of CIII in the COX10 KO fibroblasts nor abrogated the genetic defect impairing CIV assembly. Mitochondrial signaling involving reactive oxygen species (ROS) has been implicated as necessary for HIF-1α stabilization in hypoxia. We did not observe increased ROS production in hypoxia. Exposure to low oxygen levels stabilized HIF-1α and increased CI levels in RISP and COX10 KO fibroblasts. Knockdown of HIF-1α during hypoxic conditions abrogated the beneficial effect of hypoxia on the stability/assembly of CI. These findings demonstrate that oxygen and HIF-1α regulate the assembly of respiratory complexes.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Fibroblastos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Animais , Hipóxia Celular/genética , Linhagem Celular , Deficiência de Citocromo-c Oxidase/metabolismo , Doxiciclina/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/deficiência , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Inativação de Genes , Inativação Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo
4.
Mitochondrion ; 55: 64-77, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858252

RESUMO

To address the frequency of complex V defects, we systematically sequenced MT-ATP6/8 genes in 512 consecutive patients. We performed functional analysis in muscle or fibroblasts for 12 out of 27 putative homoplasmic mutations and in cybrids for four. Fibroblasts, muscle and cybrids with known deleterious mutations underwent parallel analysis. It included oxidative phosphorylation spectrophotometric assays, western blots, structural analysis, ATP production, glycolysis and cell proliferation evaluation. We demonstrated the deleterious nature of three original mutations. Striking gradation in severity of the mutations consequences and differences between muscle, fibroblasts and cybrids implied a likely under-diagnosis of human complex V defects.


Assuntos
Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Polimorfismo de Nucleotídeo Único , Adulto , Células Cultivadas , Feminino , Fibroblastos/química , Fibroblastos/citologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Híbridas/química , Células Híbridas/citologia , Masculino , Músculo Esquelético/química , Músculo Esquelético/citologia , Mutação , Fosforilação Oxidativa , Análise de Sequência de DNA
5.
Neurol Genet ; 6(4): e480, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32802947

RESUMO

OBJECTIVE: To demonstrate the causal role in disease of the MT-TP m.15992A>T mutation observed in patients from 5 independent families. METHODS: Lactate measurement, muscle histology, and mitochondrial activities in patients; PCR-based analyses of the size, amount, and sequence of muscle mitochondrial DNA (mtDNA) and proportion of the mutation; respiration, mitochondrial activities, proteins, translation, transfer RNA (tRNA) levels, and base modification state in skin fibroblasts and cybrids; and reactive oxygen species production, proliferation in the absence of glucose, and plasma membrane potential in cybrids. RESULTS: All patients presented with severe exercise intolerance and hyperlactatemia. They were associated with prominent exercise-induced muscle swelling, conspicuous in masseter muscles (2 families), and/or with congenital cataract (2 families). MRI confirmed exercise-induced muscle edema. Muscle disclosed severe combined respiratory defect. Muscle mtDNA had normal size and amount. Its sequence was almost identical in all patients, defining the haplotype as J1c10, and sharing 31 variants, only 1 of which, MT-TP m.15992A>T, was likely pathogenic. The mutation was homoplasmic in all tissues and family members. Fibroblasts and cybrids with homoplasmic mutation had defective respiration, low complex III activity, and decreased tRNAPro amount. Their respiratory complexes amount and tRNAPro aminoacylation appeared normal. Low proliferation in the absence of glucose demonstrated the relevance of the defects on cybrid biology while abnormal loss of cell volume when faced to plasma membrane depolarization provided a link to the muscle edema observed in patients. CONCLUSIONS: The homoplasmic MT-TP m.15992A>T mutation in the J1c10 haplotype causes exercise-induced muscle swelling and fatigue.

6.
J Inherit Metab Dis ; 43(3): 459-466, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31652339

RESUMO

Assessing long-term mortality and identifying predictors of death in adults with mitochondrial diseases. We retrospectively included adult patients with genetically proven mitochondrial diseases referred to our centre between January 2000 and June 2016, and collected information relative to their genetic testing, clinical assessments, and vital status. We performed single and multiple variable analyses in search of predictors of total mortality, and calculated hazard ratios (HR) and 95% confidence intervals (CI). We included 267 patients (women 59%; median age 43.3 [31.3-54.2] years), including 111 with mitochondrial DNA (mtDNA) single large-scale deletions, 65 with m.3243A>G, 24 with m.8344A>G, 32 with other mtDNA point mutations, and 36 patients with nuclear genes mutations. Over a median follow-up of 8.9 years (0.3 to 18.7), 61 patients (22.8%) died, at a median age of 50.7 (37.9-51.9) years. Primary cause of death was cardiovascular disease in 16 patients (26.2%), respiratory in 11 (18.0%), and gastrointestinal in 5 (8.1%). By multiple variable analysis, diabetes (HR 2.75; 95% CI 1.46-5.18), intraventricular cardiac conduction defects (HR 3.38; 95% CI 1.71-6.76) and focal brain involvement (HR 2.39; 95% CI 1.25-4.57) were independent predictors of death. Adult patients with mitochondrial diseases present high morbidity that can be independently predicted by the presence of diabetes, intraventricular cardiac conduction defects, and focal brain involvement.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/mortalidade , Adulto , Causas de Morte , Feminino , França/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , Estudos Retrospectivos , Análise de Sobrevida
7.
PLoS One ; 14(8): e0221886, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31461494

RESUMO

BACKGROUND: ATP synthase, the mitochondrial complex V, plays a major role in bioenergetics and its defects lead to severe diseases. Lack of a consensual protocol for the assay of complex V activity probably explains the under-representation of complex V defect among mitochondrial diseases. The aim of this work was to elaborate a fast, simple and reliable method to check the maximal complex V capacity in samples relevant to clinical diagnosis. METHODS: Using homogenates from four different murine organs, we tested the use of dodecylmaltoside, stability of the activity, linearity with protein amount, sensitivity to oligomycin and to exogenous inhibitory factor 1 (IF1), influence of freezing, and impact of mitochondrial purification. RESULTS: We obtained organ-dependent, reproducible and stable complex V specific activities, similar with fresh and frozen organs. Similar inhibition by oligomycin and exogenous IF1 demonstrated tight coupling between F1 and F0 domains. The Michaelis constant for MgATP had close values for all organs, in the 150-220 µM range. Complex V catalytic turnover rate, as measured in preparations solubilized in detergent using immunotitration and activity measurements, was more than three times higher in extracts from brain or muscle than in extracts from heart or liver. This tissue specificity suggested post-translational modifications. Concomitant measurement of respiratory activities showed only slightly different complex II/complex V ratio in the four organs. In contrast, complex I/complex V ratio differed in brain as compared to the three other organs because of a high complex I activity in brain. Mitochondria purification preserved these ratios, except for brain where selective degradation of complex I occurred. Therefore, mitochondrial purification could introduce a biased enzymatic evaluation. CONCLUSION: Altogether, this work demonstrates that a reliable assay of complex V activity is perfectly possible with very small samples from frozen biopsies, which was confirmed using control and deficient human muscles.


Assuntos
Trifosfato de Adenosina/metabolismo , Bioensaio/métodos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Especificidade de Órgãos , Animais , Glucosídeos/farmacologia , Humanos , Hidrólise , Cinética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Solubilidade , Fatores de Tempo
8.
Int J Oncol ; 54(6): 2149-2156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30942448

RESUMO

Mitotane (also termed o,p'­DDD) is the most effective therapy for advanced adrenocortical carcinoma (ACC). Mitotane­induced dyslipidemia is treated with statins. Mitotane and statins are known to exert anti­proliferative effects in vitro; however, the effects of statins have never been directly evaluated in patients with ACC and ACC cells, at least to the best of our knowledge. Thus, in this study, we aimed to examine the effects of the rosuvastatin on ACC cells. It has been shown that the combined use of mitotane and statins significantly increases the tumor control rate in patients with ACC; however, it would be of interest to elucidate the molecular mechanisms involved in this potentiation. In this study, we examined the effects of mitotane, rosuvastatin and their combination in NCI­H295R human ACC cells using proliferation assays, gene expression analyses and free intracellular cholesterol measurements. The results revealed that mitotane dose­dependently reduced cell viability, induced apoptosis and increased intracellular free cholesterol levels, considered as one of the key features of mitotane action, while rosuvastatin alone reduced cell viability and increased apoptosis at high concentrations. We also demonstrated that rosuvastatin potentiated the effects of mitotane by reducing cell viability, inducing apoptosis, increasing intracellular free cholesterol levels, and by decreasing the expression of 3­hydroxy­3­methylglutaryl­CoA reductase (HMGCR) and ATP binding cassette subfamily a member 1 (ABCA1), genes involved in cholesterol metabolism, and inhibiting steroidogenesis. Collectively, potentiating the effects of mitotane with the use of rosuvastatin may provide novel therapeutic strategies for ACC, given that the combination of these drugs, pending clinical validation, may lead to the better management of ACC.


Assuntos
Neoplasias do Córtex Suprarrenal/tratamento farmacológico , Carcinoma Adrenocortical/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Mitotano/farmacologia , Rosuvastatina Cálcica/farmacologia , Neoplasias do Córtex Suprarrenal/patologia , Carcinoma Adrenocortical/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Mitotano/uso terapêutico , Rosuvastatina Cálcica/uso terapêutico
10.
FASEB J ; 33(6): 7168-7179, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30848931

RESUMO

Polymerase γ catalytic subunit (POLG) gene encodes the enzyme responsible for mitochondrial DNA (mtDNA) synthesis. Mutations affecting POLG are the most prevalent cause of mitochondrial disease because of defective mtDNA replication and lead to a wide spectrum of clinical phenotypes characterized by mtDNA deletions or depletion. Enhancing mitochondrial deoxyribonucleoside triphosphate (dNTP) synthesis effectively rescues mtDNA depletion in different models of defective mtDNA maintenance due to dNTP insufficiency. In this study, we studied mtDNA copy number recovery rates following ethidium bromide-forced depletion in quiescent fibroblasts from patients harboring mutations in different domains of POLG. Whereas control cells spontaneously recovered initial mtDNA levels, POLG-deficient cells experienced a more severe depletion and could not repopulate mtDNA. However, activation of deoxyribonucleoside (dN) salvage by supplementation with dNs plus erythro-9-(2-hydroxy-3-nonyl) adenine (inhibitor of deoxyadenosine degradation) led to increased mitochondrial dNTP pools and promoted mtDNA repopulation in all tested POLG-mutant cells independently of their specific genetic defect. The treatment did not compromise POLG fidelity because no increase in multiple deletions or point mutations was detected. Our study suggests that physiologic dNTP concentration limits the mtDNA replication rate. We thus propose that increasing mitochondrial dNTP availability could be of therapeutic interest for POLG deficiency and other conditions in which mtDNA maintenance is challenged.-Blázquez-Bermejo, C., Carreño-Gago, L., Molina-Granada, D., Aguirre, J., Ramón, J., Torres-Torronteras, J., Cabrera-Pérez, R., Martín, M. Á., Domínguez-González, C., de la Cruz, X., Lombès, A., García-Arumí, E., Martí, R., Cámara, Y. Increased dNTP pools rescue mtDNA depletion in human POLG-deficient fibroblasts.


Assuntos
DNA Polimerase gama/deficiência , DNA Mitocondrial/metabolismo , Desoxirribonucleotídeos/farmacologia , Fibroblastos/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Adulto , Domínio Catalítico/genética , Células Cultivadas , DNA Polimerase gama/genética , Replicação do DNA/efeitos dos fármacos , DNA Mitocondrial/genética , Desoxirribonucleotídeos/metabolismo , Etídio/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Genótipo , Humanos , Masculino , Mitocôndrias Musculares/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Mutação Puntual , Conformação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência
11.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30683687

RESUMO

Mitochondria have a compartmentalized gene expression system dedicated to the synthesis of membrane proteins essential for oxidative phosphorylation. Responsive quality control mechanisms are needed to ensure that aberrant protein synthesis does not disrupt mitochondrial function. Pathogenic mutations that impede the function of the mitochondrial matrix quality control protease complex composed of AFG3L2 and paraplegin cause a multifaceted clinical syndrome. At the cell and molecular level, defects to this quality control complex are defined by impairment to mitochondrial form and function. Here, we establish the etiology of these phenotypes. We show how disruptions to the quality control of mitochondrial protein synthesis trigger a sequential stress response characterized first by OMA1 activation followed by loss of mitochondrial ribosomes and by remodelling of mitochondrial inner membrane ultrastructure. Inhibiting mitochondrial protein synthesis with chloramphenicol completely blocks this stress response. Together, our data establish a mechanism linking major cell biological phenotypes of AFG3L2 pathogenesis and show how modulation of mitochondrial protein synthesis can exert a beneficial effect on organelle homeostasis.


Assuntos
Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/biossíntese , Biossíntese de Proteínas , Animais , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Metaloendopeptidases/metabolismo , Camundongos , Membranas Mitocondriais/metabolismo , Ribossomos Mitocondriais/metabolismo , Mutação , Fenótipo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transfecção
13.
Orphanet J Rare Dis ; 13(1): 120, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30025539

RESUMO

BACKGROUND: Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS: We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS: Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.


Assuntos
Acidose/genética , Acidose/metabolismo , Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Riboflavina/uso terapêutico , Acidose/patologia , Atividades Cotidianas , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Cardiomiopatia Hipertrófica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Masculino , Doenças Mitocondriais/patologia , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/patologia , Prognóstico
14.
J Pharmacol Exp Ther ; 365(3): 711-726, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29669730

RESUMO

Although mitochondriotoxicity plays a major role in drug-induced hepatotoxicity, alteration of mitochondrial DNA (mtDNA) homeostasis has been described only with a few drugs. Because it requires long drug exposure, this mechanism of toxicity cannot be detected with investigations performed in isolated liver mitochondria or cultured cells exposed to drugs for several hours or a few days. Thus, a first aim of this study was to determine whether a 2-week treatment with nine hepatotoxic drugs could affect mtDNA homeostasis in HepaRG cells. Previous investigations with these drugs showed rapid toxicity on oxidative phosphorylation but did not address the possibility of delayed toxicity secondary to mtDNA homeostasis impairment. The maximal concentration used for each drug induced about 10% cytotoxicity. Two other drugs, zalcitabine and linezolid, were used as positive controls for their respective effects on mtDNA replication and translation. Another goal was to determine whether drug-induced mitochondriotoxicity could be modulated by lipid overload mimicking nonalcoholic fatty liver. Among the nine drugs, imipramine and ritonavir induced mitochondrial effects suggesting alteration of mtDNA translation. Ritonavir toxicity was stronger in nonsteatotic cells. None of the nine drugs decreased mtDNA levels. However, increased mtDNA was observed with five drugs, especially in nonsteatotic cells. The mtDNA levels could not be correlated with the expression of key factors involved in mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), PGC1ß, and AMP-activated protein kinase α-subunit. Hence, drug-induced impairment of mtDNA translation might not be rare, and increased mtDNA levels could be a frequent adaptive response to slight energy shortage. Nevertheless, this adaptation could be impaired by lipid overload.


Assuntos
Citotoxinas/efeitos adversos , DNA Mitocondrial/metabolismo , Homeostase/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518970

RESUMO

Mammalian respiratory complex I (CI) biogenesis requires both nuclear and mitochondria-encoded proteins and is mostly organized in respiratory supercomplexes. Among the CI proteins encoded by the mitochondrial DNA, NADH-ubiquinone oxidoreductase chain 1 (ND1) is a core subunit, evolutionary conserved from bacteria to mammals. Recently, ND1 has been recognized as a pivotal subunit in maintaining the structural and functional interaction among the hydrophilic and hydrophobic CI arms. A critical role of human ND1 both in CI biogenesis and in the dynamic organization of supercomplexes has been depicted, although the proof of concept is still missing and the critical amount of ND1 protein necessary for a proper assembly of both CI and supercomplexes is not defined. By exploiting a unique model in which human ND1 is allotopically re-expressed in cells lacking the endogenous protein, we demonstrated that the lack of this protein induces a stall in the multi-step process of CI biogenesis, as well as the alteration of supramolecular organization of respiratory complexes. We also defined a mutation threshold for the m.3571insC truncative mutation in mitochondrially encoded NADH:ubiquinone oxidoreductase core subunit 1 (MT-ND1), below which CI and its supramolecular organization is recovered, strengthening the notion that a certain amount of human ND1 is required for CI and supercomplexes biogenesis.


Assuntos
Alelos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Mutação , NADH Desidrogenase/química , NADH Desidrogenase/genética , Respiração Celular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/metabolismo , Consumo de Oxigênio , Ligação Proteica , Relação Estrutura-Atividade
16.
Mol Cell ; 69(4): 594-609.e8, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29452639

RESUMO

Accumulating evidence indicates that the MDM2 oncoprotein promotes tumorigenesis beyond its canonical negative effects on the p53 tumor suppressor, but these p53-independent functions remain poorly understood. Here, we show that a fraction of endogenous MDM2 is actively imported in mitochondria to control respiration and mitochondrial dynamics independently of p53. Mitochondrial MDM2 represses the transcription of NADH-dehydrogenase 6 (MT-ND6) in vitro and in vivo, impinging on respiratory complex I activity and enhancing mitochondrial ROS production. Recruitment of MDM2 to mitochondria increases during oxidative stress and hypoxia. Accordingly, mice lacking MDM2 in skeletal muscles exhibit higher MT-ND6 levels, enhanced complex I activity, and increased muscular endurance in mild hypoxic conditions. Furthermore, increased mitochondrial MDM2 levels enhance the migratory and invasive properties of cancer cells. Collectively, these data uncover a previously unsuspected function of the MDM2 oncoprotein in mitochondria that play critical roles in skeletal muscle physiology and may contribute to tumor progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Transformação Celular Neoplásica/patologia , Complexo I de Transporte de Elétrons/metabolismo , Regulação Neoplásica da Expressão Gênica , Mitocôndrias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Movimento Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Complexo I de Transporte de Elétrons/genética , Genoma Mitocondrial , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Invasividade Neoplásica , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais , Transcrição Gênica , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Clin Invest ; 128(4): 1671-1687, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447131

RESUMO

Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Reparo do DNA , Neoplasias Pulmonares/metabolismo , NAD/biossíntese , Neoplasias Experimentais/metabolismo , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Citocinas/genética , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Nus , NAD/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo
20.
Nat Commun ; 8: 15824, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604674

RESUMO

Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.


Assuntos
Perfilação da Expressão Gênica , Doenças Mitocondriais/genética , Análise de Sequência de RNA , Técnicas e Procedimentos Diagnósticos , Humanos , Splicing de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...