Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(50): 18263-18275, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061075

RESUMO

Plasmonic nanobubbles are composite objects resulting from the interaction between light and metallic nanoparticles immersed in a fluid. Plasmonic nanobubbles have applications in photothermal therapies, drug delivery, microfluidic manipulations, and solar energy conversion. Their early formation is, however, barely characterized due to the short time and length scales relevant to the process. Here, we investigate, using molecular dynamics (MD) simulations, the effect of nanoparticle wettability on both the local fluid thermodynamics and the kinetics of nanobubble generation in water. We first show that the local onset temperature of vapor nucleation decreases with the nanoparticle/water interfacial energy and may be 100 K below the water spinodal temperature in the case of weak nanoparticle/water interactions. Second, we demonstrate that vapor nucleation may be slower in the case of weak water/nanoparticle interactions. This result, which is qualitatively at odds with the predictions of isothermal classical nucleation theory, may be explained by the competition between two antagonist effects: while, classically, hydrophobicity increases the vapor nucleation rate, it also penalizes interfacial thermal transfer, slowing down kinetics. The kinetics of heat transfer from the nanoparticle to water is controlled by the interfacial thermal conductance. This quantity turns out not only to decrease with the nanoparticle hydrophobicity but also drops down prior to phase change, yielding even longer nucleation times. Such conclusions were reached by considering the comparison between MD and continuous heat transfer models. These results put forward the role of nanoparticle wettability in the generation of plasmonic nanobubbles observed experimentally and open the path to the control of boiling using nanopatterned surfaces.

2.
J Chem Phys ; 156(8): 084701, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35232191

RESUMO

Coating gold nanostructures with a silica shell has been long considered for biomedical applications, including photoacoustic imaging. Recent experimental and modeling investigations reported contradicting results concerning the effect of coating on the photoacoustic response of gold nanostructures. Enhanced photoacoustic response is generally attributed to facilitated heat transfer at the gold/silica/water system. Here, we examine the photoacoustic response of gold core-silica shell nanoparticles immersed in water using a combination of the two temperature model and hydrodynamic phase field simulations. Here, of particular interest is the role of the interfacial coupling between the gold electrons and silica shell phonons. We demonstrate that as compared to uncoated nanoparticles, photoacoustic response is enhanced for very thin silica shells (5 nm) and short laser pulses, but for thicker coatings, the photoacoustic performance are generally deteriorated. We extend the study to the regime of nanocavitation and show that the generation of nanobubbles may also play a role in the enhanced acoustic response of core-shell nanoparticles. Our modeling effort may serve as guides for the optimization of the photoacoustic response of heterogeneous metal-dielectric nanoparticles.

3.
Nanoscale ; 8(31): 14870-6, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27461058

RESUMO

Nanobubbles generated by laser heated plasmonic nanoparticles are of interest for biomedical and energy harvesting applications. Of utmost importance is the maximal size of these transient bubbles. Here, we report hydrodynamic phase field simulations of the dynamics of laser induced nanobubbles, with the aim to understand which physical processes govern their maximal size. We show that the nanobubble maximal size and lifetime are to a large extent controlled by the ballistic thermal flux which is present inside the bubble. Taking into account this thermal flux, we can reproduce the fluence dependence of the maximal nanobubble radius as reported experimentally. We also discuss the influence of the laser pulse duration on the number of nanobubbles generated and their maximal size. These studies represent a significant step toward the optimization of the nanobubble size, which is of crucial importance for photothermal cancer therapy applications.

4.
Artigo em Inglês | MEDLINE | ID: mdl-25974580

RESUMO

We describe the dynamics of vapor nanobubbles in water, on the basis of simulations of a hydrodynamics phase-field model. This situation is relevant to recent experiments, where a water nanobubble is generated around a nanoparticle immersed in water, and heated by an intense laser pulse. We emphasize the importance of nanoscale effects in the dynamics of the nanobubble. We first analyze the evolution of the temperature inside the bubble. We show that the temperature drops by hundredths of kelvins in a few picoseconds, just after nanobubble formation. This is the result of the huge drop of the thermal boundary conductance between the nanoparticle and the fluid accompanying vaporization. Subsequently, the temperature inside the vapor is almost homogeneous and the temperature gradient is concentrated in the liquid, whose thermodynamic state locally follows the saturation line. We discuss also the evolution of the pressure inside the vapor nanobubble. We show that nanobubble generation is accompanied by a pressure wave propagating in the liquid at a velocity close to the liquid speed of sound. The internal pressure inside the vapor just after its formation largely exceeds Laplace pressure and quickly relaxes as a result of the damping generated by the viscous forces. All these considerations shed light on the thermodynamics of the nanobubbles generated experimentally.

5.
Phys Rev Lett ; 112(10): 105701, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679307

RESUMO

We report on the formation and growth of nanobubbles around laser-heated gold nanoparticles in water. Using a hydrodynamic free-energy model, we show that the temporal evolution of the nanobubble radius is asymmetrical: the expansion is found to be adiabatic, while the collapse is best described by an isothermal evolution. We unveil the critical role of the thermal boundary resistance in the kinetics of formation of the nanobubbles: close to the vapor production threshold, nanobubble generation is very long, yielding optimal conditions for laser-energy conversion. Furthermore, the long appearance times allow nanoparticle melting before the onset of vaporization.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Químicos , Calefação , Hidrodinâmica , Cinética , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA