Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1896): 20220484, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38186272

RESUMO

Metabolic cold adaptation, or Krogh's rule, is the controversial hypothesis that predicts a monotonically negative relationship between metabolic rate and environmental temperature for ectotherms living along thermal clines measured at a common temperature. Macrophysiological patterns consistent with Krogh's rule are not always evident in nature, and experimentally evolved responses to temperature have failed to replicate such patterns. Hence, temperature may not be the sole driver of observed variation in metabolic rate. We tested the hypothesis that temperature, as a driver of energy demand, interacts with nutrition, a driver of energy supply, to shape the evolution of metabolic rate to produce a pattern resembling Krogh's rule. To do this, we evolved replicate lines of Drosophila melanogaster at 18, 25 or 28°C on control, low-calorie or low-protein diets. Contrary to our prediction, we observed no effect of nutrition, alone or interacting with temperature, on adult female and male metabolic rates. Moreover, support for Krogh's rule was only in females at lower temperatures. We, therefore, hypothesize that observed variation in metabolic rate along environmental clines arises from the metabolic consequences of environment-specific life-history optimization, rather than because of the direct effect of temperature on metabolic rate. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.


Assuntos
Drosophila melanogaster , Estado Nutricional , Feminino , Masculino , Animais , Temperatura
2.
Glob Chang Biol ; 29(19): 5540-5551, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37560790

RESUMO

By 2100, greenhouse gases are predicted to reduce ozone and cloud cover over the tropics causing increased exposure of organisms to harmful ultraviolet-B radiation (UVBR). UVBR damages DNA and is an important modulator of immune function and disease susceptibility in humans and other vertebrates. The effect of UVBR on invertebrate immune function is largely unknown, but UVBR together with ultraviolet-A radiation impairs an insect immune response that utilizes melanin, a pigment that also protects against UVBR-induced DNA damage. If UVBR weakens insect immunity, then it may make insect disease vectors more susceptible to infection with pathogens of socioeconomic and public health importance. In the tropics, where UVBR is predicted to increase, the mosquito-borne dengue virus (DENV), is prevalent and a growing threat to humans. We therefore examined the effect of UVBR on the mosquito Aedes aegypti, the primary vector for DENV, to better understand the potential implications of increased tropical UVBR for mosquito-borne disease risk. We found that exposure to a UVBR dose that caused significant larval mortality approximately doubled the probability that surviving females would become infected with DENV, despite this UVBR dose having no effect on the expression of an effector gene involved in antiviral immunity. We also found that females exposed to a lower UVBR dose were more likely to have low fecundity even though this UVBR dose had no effect on larval size or activity, pupal cuticular melanin content, or adult mass, metabolic rate, or flight capacity. We conclude that future increases in tropical UVBR associated with anthropogenic global change may have the benefit of reducing mosquito-borne disease risk for humans by reducing mosquito fitness, but this benefit may be eroded if it also makes mosquitoes more likely to be infected with deadly pathogens.


Assuntos
Aedes , Vírus da Dengue , Dengue , Humanos , Animais , Feminino , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Mosquitos Vetores , Melaninas/metabolismo , Aedes/genética , Aedes/metabolismo , Larva
3.
Science ; 380(6643): eadf5188, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104584

RESUMO

Froese and Pauly argue that our model is contradicted by the observation that fish reproduce before their growth rate decreases. Kearney and Jusup show that our model incompletely describes growth and reproduction for some species. Here we discuss the costs of reproduction, the relationship between reproduction and growth, and propose tests of models based on optimality and constraint.


Assuntos
Perciformes , Reprodução , Animais , Modelos Biológicos , Perciformes/anatomia & histologia , Perciformes/crescimento & desenvolvimento
4.
Science ; 377(6608): 834-839, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35981018

RESUMO

Organisms use energy to grow and reproduce, so the processes of energy metabolism and biological production should be tightly bound. On the basis of this tenet, we developed and tested a new theory that predicts the relationships among three fundamental aspects of life: metabolic rate, growth, and reproduction. We show that the optimization of these processes yields the observed allometries of metazoan life, particularly metabolic scaling. We conclude that metabolism, growth, and reproduction are inextricably linked; that together they determine fitness; and, in contrast to longstanding dogma, that no single component drives another. Our model predicts that anthropogenic change will cause animals to evolve decreased scaling exponents of metabolism, increased growth rates, and reduced lifetime reproductive outputs, with worrying consequences for the replenishment of future populations.


Assuntos
Metabolismo Energético , Crescimento e Desenvolvimento , Modelos Biológicos , Reprodução , Animais
5.
J Exp Biol ; 223(Pt 11)2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32366686

RESUMO

The oxygen and capacity-limited thermal tolerance (OCLTT) hypothesis proposes that the thermal tolerance of an animal is shaped by its capacity to deliver oxygen in relation to oxygen demand. Studies testing this hypothesis have largely focused on measuring short-term performance responses in animals under acute exposure to critical thermal maximums. The OCLTT hypothesis, however, emphasises the importance of sustained animal performance over acute tolerance. The present study tested the effect of chronic hypoxia and hyperoxia during development on moderate to long-term performance indicators at temperatures spanning the optimal temperature for growth in the speckled cockroach, Nauphoeta cinerea In contrast to the predictions of the OCLTT hypothesis, development under hypoxia did not significantly reduce growth rate or running performance, and development under hyperoxia did not significantly increase growth rate or running performance. The effects of developmental temperature and oxygen on tracheal morphology and metabolic rate were also not consistent with OCLTT predictions, suggesting that oxygen delivery capacity is not the primary driver shaping thermal tolerance in this species. Collectively, these findings suggest that the OCLTT hypothesis does not explain moderate to long-term thermal performance in N.cinerea, which raises further questions about the generality of the hypothesis.


Assuntos
Baratas , Oxigênio , Animais , Hipóxia , Consumo de Oxigênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...