Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thorac Cancer ; 14(34): 3389-3396, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860943

RESUMO

BACKGROUND: The localization of lung nodules is challenging during thoracoscopy. In this study, we evaluated the use of three-dimensional (3D) lung reconstruction for use in the operating room to guide the identification of lung nodules during thoracoscopy. METHODS: This was a single-center retrospective study. All consecutive patients undergoing thoracoscopic resection of lung nodules were included in the study. Patients were retrospectively divided into two groups based upon whether the thoracoscopic resection was performed with the assistance (3D group) or not (standard group) of 3D lung reconstruction. The operative time (minutes) to detect lung nodules was statistically compared between the two study groups in relation to the characteristics of lung nodules as size, localization, and distance from the visceral pleura. RESULTS: Our study population consisted of 170 patients: 85 in the 3D group and 85 in the standard group. No intergroup difference differences were found regarding the characteristics and histological diagnosis of lesions. The standard group compared to the 3D group was associated with a significantly longer operative time for the detection of lesions <10 mm (13.87 ± 2.59 vs. 5.52 ± 1.01, p < 0.001), lesions between 10 and 20 mm (5.05 ± 0.84 vs. 3.89 ± 0.92; p = 0.03), lesions localized in complex segments (7.49 ± 4.25 vs. 5.11 ± 0.97; p < 0.001), and deep lesions (9.58 ± 4.82 vs. 5.4 ± 1.01, p < 0.001). CONCLUSIONS: Our 3D lung reconstruction model for use in the operating room may be an additional tool for thoracic surgeons to guide the detection of small and deep nodules during thoracoscopy. It is a noninvasive and cost saving procedure and may be widely used.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Toracoscopia/métodos , Pulmão/patologia , Cirurgia Torácica Vídeoassistida/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/cirurgia
2.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980182

RESUMO

Primary brain tumors are a leading cause of death worldwide and are characterized by extraordinary heterogeneity and high invasiveness. Current drug and radiotherapy therapies combined with surgical approaches tend to increase the five-year survival of affected patients, however, the overall mortality rate remains high, thus constituting a clinical challenge for which the discovery of new therapeutic strategies is needed. In this field, novel immunotherapy approaches, aimed at overcoming the complex immunosuppressive microenvironment, could represent a new method of treatment for central nervous system (CNS) tumors. Chemokines especially are a well-defined group of proteins that were so named due to their chemotactic properties of binding their receptors. Chemokines regulate the recruitment and/or tissue retention of immune cells as well as the mobilization of tumor cells that have undergone epithelial-mesenchymal transition, promoting tumor growth. On this basis, this review focuses on the function and involvement of chemokines and their receptors in primary brain tumors, specifically examining chemokine-targeting immunotherapies as one of the most promising strategies in neuro-oncology.


Assuntos
Neoplasias Encefálicas , Quimiocinas , Humanos , Quimiocinas/metabolismo , Imunoterapia , Neoplasias Encefálicas/terapia , Microambiente Tumoral
3.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555334

RESUMO

High-grade brain tumors are malignant tumors with poor survival and remain the most difficult tumors to treat. An important contributing factor to the development and progression of brain tumors is their ability to evade the immune system. Several immunotherapeutic strategies including vaccines and checkpoint inhibitors have been studied to improve the effectiveness of the immune system in destroying cancer cells. Recent studies have shown that kinase inhibitors, capable of inhibiting signal transduction cascades that affect cell proliferation, migration, and angiogenesis, have additional immunological effects. In this review, we explain the beneficial therapeutic effects of novel small-molecule kinase inhibitors and explore how, through different mechanisms, they increase the protective antitumor immune response in high-grade brain tumors.


Assuntos
Neoplasias Encefálicas , Inibidores de Proteínas Quinases , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Transdução de Sinais , Imunidade , Sistema Imunitário , Microambiente Tumoral , Imunoterapia
4.
J Pers Med ; 12(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36556190

RESUMO

Gliomas are relatively rare but fatal cancers, and there has been insufficient research to specifically evaluate the role of headache as a risk factor. Nowadays, gliomas are difficult to cure due to the infiltrative nature and the absence of specific adjuvant therapies. Until now, mutations in hundreds of genes have been identified in gliomas and most relevant discoveries showed specific genes alterations related to migraine as potential risk factors for brain tumor onset. Prognostic biomarkers are required at the time of diagnosis to better adapt therapies for cancer patients. In this review, we aimed to highlight the significant modulation of CLOCK, BMLA1 and NOTCH genes in glioma onset and development, praising these genes to be good as potentially attractive therapeutic markers for brain tumors. A improved knowledge regarding the role of these genes in triggering or modulating glioma maybe the key to early diagnosing brain tumor onset in patients affected by a simple headache. In addition, investigating on these genes we can suggest potential therapeutic targets for treating brain tumors. These considerations open up the possibility of personalized treatments that can target each brain tumor's specific genetic abnormality.

5.
Front Surg ; 9: 888332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722538

RESUMO

A 31-year-old female patient was admitted to the emergency department with signs and symptoms of acute abdomen. Urgent CT scan was performed and small bowel volvulus, with whirlpool sign, was noted and torsion of the spleen was also involved too.

6.
Cancers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36612214

RESUMO

New therapeutic approaches are needed to improve the outcome of patients with glioblastoma (GBM). Propionate, a short-chain fatty acid (SCFA), has a potent antiproliferative effect on various tumor cell types. Peroxisome proliferator-activated receptor (PPAR) ligands possess anticancer properties. We aimed to investigate the PPAR-γ/SCFAs interaction in in vitro and in vivo models of GBM. The U87 cell line was used in the in vitro study and was treated with sodium propionate (SP). U87 cells were silenced by using PPAR-γ siRNA or Ctr siRNA. In the in vivo study, BALB/c nude mice were inoculated in the right flank with 3 × 106 U-87 cells. SP (doses of 30 and 100 mg/kg) and GW9662 (1 mg/kg) were administered. In vitro exposure of GBM to SP resulted in prominent apoptosis activation while the autophagy pathway was promoted by SP treatments by influencing autophagy-related proteins. Knockdown of PPAR-γ sensitized GBM cells and blocked the SP effect. In vivo, SP was able to decrease tumor growth and to resolve GBM tissue features. SP promoted apoptosis and autophagy pathways and tumor cell proliferation leading to cell cycle arrest through a PPAR-γ-dependent mechanism suggesting that the PPAR-γ/SCFAs axis could be targeted for the management of GBM.

7.
Aging (Albany NY) ; 13(23): 25055-25071, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905501

RESUMO

Primary myelofibrosis is a Ph-negative chronic myeloproliferative neoplasm characterized by bone marrow fibrosis and associated with the involvement of several pathways, in addition to bone marrow microenvironment alterations, mostly driven by the activation of the cytokine receptor/JAK2 pathway. Identification of driver mutations has led to the development of targeted therapy for myelofibrosis, contributing to reducing inflammation, although this currently does not translate into bone marrow fibrosis remission. Therefore, understanding the clear molecular cut underlying this pathology is now necessary to improve the clinical outcome of patients. The present study aims to investigate the involvement of IGFBP-6/sonic hedgehog /Toll-like receptor 4 axis in the microenvironment alterations of primary myelofibrosis. We observed a significant increase in IGFBP-6 expression levels in primary myelofibrosis patients, coupled with a reduction to near-normal levels in primary myelofibrosis patients with JAK2V617F mutation. We also found that both IGFBP-6 and purmorphamine, a SHH activator, were able to induce mesenchymal stromal cells differentiation with an up-regulation of cancer-associated fibroblasts markers. Furthermore, TLR4 signaling was also activated after IGFBP-6 and purmorphamine exposure and reverted by cyclopamine exposure, an inhibitor of the SHH pathway, confirming that SHH is involved in TLR4 activation and microenvironment alterations. In conclusion, our results suggest that the IGFBP-6/SHH/TLR4 axis is implicated in alterations of the primary myelofibrosis microenvironment and that IGFBP-6 may play a central role in activating SHH pathway during the fibrotic process.


Assuntos
Medula Óssea/metabolismo , Proteínas Hedgehog/metabolismo , Proteína 6 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Mielofibrose Primária/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Western Blotting , Medula Óssea/patologia , Estudos de Casos e Controles , Diferenciação Celular , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Humanos , Mielofibrose Primária/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
8.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769212

RESUMO

Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Carbono/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Antineoplásicos/farmacocinética , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...