Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139405

RESUMO

Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.


Assuntos
Vacinas contra Influenza , Plantas , Animais , Humanos , Canadá , Preparações Farmacêuticas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
2.
Nanomaterials (Basel) ; 13(19)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37836346

RESUMO

We demonstrate a simple, low-energy method whereby tomato mosaic virus (ToMV) particles can be used to template the production of nanowires and particles consisting of alloys of gold (Au), platinum (Pt) and palladium (Pd) in various combinations. Selective nanowire growth within the inner channel of the particles was achieved using the polymeric capping agent polyvinylpyrrolidone (PVPK30) and the reducing agent ascorbic acid. The reaction conditions also resulted in the deposition of alloy nanoparticles on the external surface of the rods in addition to the nanowire structures within the internal cavity. The resulting materials were characterized using a variety of electron microscopic and spectroscopic techniques, which revealed both the structural and chemical composition of the alloys within the nanomaterials.

3.
Lab Chip ; 23(20): 4400-4412, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740394

RESUMO

The recent COVID-19 outbreak highlighted the need for lab-on-chip diagnostic technology fit for real-life deployment in the field. Existing bottlenecks in multistep analytical microsystem integration and upscalable, standardized fabrication techniques delayed the large-scale deployment of lab-on-chip solutions during the outbreak, throughout a global diagnostic test shortage. This study presents a technology that has the potential to address these issues by redeploying and repurposing the ubiquitous printed circuit board (PCB) technology and manufacturing infrastructure. We demonstrate the first commercially manufactured, miniaturised lab-on-PCB device for loop-mediated isothermal amplification (LAMP) genetic detection of SARS-CoV-2. The system incorporates a mass-manufactured, continuous-flow PCB chip with ultra-low cost fluorescent detection circuitry, rendering it the only continuous-flow µLAMP platform with off-the-shelf optical detection components. Ultrafast, SARS-CoV-2 RNA amplification in wastewater samples was demonstrated within 2 min analysis, at concentrations as low as 17 gc µL-1. We further demonstrate our device operation by detecting SARS-CoV-2 in 20 human nasopharyngeal swab samples, without the need for any RNA extraction or purification. This renders the presented miniaturised nucleic-acid amplification-based diagnostic test the fastest reported SARS-CoV-2 genetic detection platform, in a practical implementation suitable for deployment in the field. This technology can be readily extended to the detection of alternative pathogens or genetic targets for a very broad range of applications and matrices. LoCKAmp lab-on-PCB chips are currently mass-manufactured in a commercial, ISO-compliant PCB factory, at a small-scale production cost of £2.50 per chip. Thus, with this work, we demonstrate a high technology-readiness-level lab-on-chip-based genetic detection system, successfully benchmarked against standard analytical techniques both for wastewater and nasopharyngeal swab SARS-CoV-2 detection.

4.
Commun Biol ; 6(1): 433, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076658

RESUMO

Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.


Assuntos
Potyviridae , Potyvirus , Potyviridae/genética , Microscopia Crioeletrônica , Potyvirus/genética , RNA
5.
Virology ; 577: 155-162, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36384077

RESUMO

We have developed methods for the templated synthesis of palladium nanowires (Pd NWs) within the central channel of tobacco mosaic virus (TMV) nanorods of various lengths. We show that uniform 4 nm diameter Pd NWs can be produced by selective growth within these channels by including the capping reagent, poly(vinyl-pyrrolidone) (PVP30K) and reducing the metal precursor to metallic palladium with ascorbic acid. The length of the Pd NWs can be controlled either by varying the length of the nanorod templates and/or through alterations to the reaction conditions. We have also demonstrated bimetallic gold (Au)-palladium (Pd) in-situ metallization of TMV nanorods resulting in the production of Pd NWs 6 nm gold nanoparticles attached to their ends. The materials produced have many potential applications in the construction of nanoscale devices.

6.
J Mol Biol ; 434(24): 167873, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36328231

RESUMO

We have investigated whether the presence of the origin of assembly sequence (OAS) of tobacco mosaic virus (TMV) is necessary for the specific encapsidation of replicating viral RNA. To this end TMV coat protein was expressed from replicating RNA constructs with or without the OAS in planta. In both cases the replicating RNA was specifically encapsidated to give nucleoprotein nanorods, though the yield in the absence of the OAS was reduced to about 60% of that in its presence. Moreover, the nanorods generated in the absence of the OAS were more heterogeneous in length and contained frequent structural discontinuities. These results strongly suggest that the function of the OAS is to provide a unique site for the initiation of viral assembly, leading to a one-start helix, rather than the selection of virus RNA for packaging.


Assuntos
RNA Viral , Vírus do Mosaico do Tabaco , Montagem de Vírus , RNA Viral/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/fisiologia , Montagem de Vírus/genética , Replicação do RNA , Sequência de Bases , Nanotubos
7.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014368

RESUMO

The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work, the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20 among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Glicosilação , Humanos , Mamíferos/metabolismo , Polissacarídeos/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Nicotiana/genética , Nicotiana/metabolismo , Vírion
8.
Front Bioeng Biotechnol ; 10: 877361, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557863

RESUMO

The production of designer-length tobacco mosaic virus (TMV) nanorods in plants has been problematic in terms of yields, particularly when modified coat protein subunits are incorporated. To address this, we have investigated the use of a replicating potato virus X-based vector (pEff) to express defined length nanorods containing either wild-type or modified versions of the TMV coat protein. This system has previously been shown to be an efficient method for producing virus-like particles of filamentous plant viruses. The length of the resulting TMV nanorods can be controlled by varying the length of the encapsidated RNA. Nanorod lengths were analyzed with a custom-written Python computer script coupled with the Nanorod UI user interface script, thereby generating histograms of particle length. In addition, nanorod variants were produced by incorporating coat protein subunits presenting metal-binding peptides at their C-termini. We demonstrate the utility of this approach by generating nanorods that bind colloidal gold nanoparticles.

9.
Methods Mol Biol ; 2480: 103-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616860

RESUMO

Recent discoveries in the dynamics of genome replication and packaging in the plant virus Cowpea mosaic virus (CPMV) has led to the development of a novel method for specifically packaging an RNA molecule of choice into virus-like particles (VLPs) of CPMV. Thanks to modern gene synthesis and molecular cloning methods, the DNA sequence corresponding to an RNA sequence of interest can be cloned into a suitable expression plasmid for transient expression in plants. We describe here a method for ensuring that this RNA sequence will be packaged within VLPs of CPMV in plant cells by replication-dependent RNA packaging. This requires co-expression of the CPMV replication machinery alongside the CPMV coat protein precursor. These components are co-expressed in the leaves of the Nicotiana benthamiana plant and this co-expression results in the production of large quantities of VLPs that contain the RNA sequence of choice. These VLPs are easy to extract and purify from the plant tissue, and are stable for months in refrigerated conditions. These VLPs can then be used for a variety of different applications, such as RNA delivery or control reagents in RT-qPCR.


Assuntos
Comovirus , Vírus de Plantas , Comovirus/genética , Comovirus/metabolismo , Vírus de Plantas/genética , Plasmídeos , RNA/metabolismo , Nicotiana/genética
10.
Plant Biotechnol J ; 20(7): 1363-1372, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35325498

RESUMO

We have investigated the use of transient expression to produce virus-like particles (VLPs) of severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19, in Nicotiana benthamiana. Expression of a native form of the spike (S) protein, either alone or in combination with the envelope (E) and membrane (M) proteins, all of which were directed to the plant membranes via their native sequences, was assessed. The full-length S protein, together with degradation products, could be detected in total protein extracts from infiltrated leaves in both cases. Particles with a characteristic 'crown-shaped' or 'spiky' structure could be purified by density gradient centrifugation. Enzyme-linked immunosorbent assays using anti-S antibodies showed that threefold higher levels of VLPs containing the full-length S protein were obtained by infiltration with S alone, compared to co-infiltration of S with M and E. The S protein within the VLPs could be cleaved by furin in vitro and the particles showed reactivity with serum from recovering COVID-19 patients, but not with human serum taken before the pandemic. These studies show that the native S protein expressed in plants has biological properties similar to those of the parent virus. We show that the approach undertaken is suitable for the production of VLPs from emerging strains and we anticipate that the material will be suitable for functional studies of the S protein, including the assessment of the effects of specific mutations. As the plant-made material is noninfectious, it does not have to be handled under conditions of high containment.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
J Virol Methods ; 300: 114372, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34838537

RESUMO

The current gold standard technique for SARS-CoV-2 diagnostics is hydrolysis probe-based RT-qPCR. Reliable testing requires reliable control reagents to monitor the efficiency of RNA extraction, reverse transcription and PCR amplification. Here we describe a custom RNA packaging system from the plant virus cowpea mosaic virus to produce virus-like particles that encapsidate specifically designed portions of the genome of SARS-CoV-2, the causative agent of COVID-19. These encapsidated mimics are highly stable particles which can be used either to spike patient swab samples for use as an in-tube extraction and reaction positive control in multiplex RT-qPCR, or alone as a side-by-side mock-positive control reagent. The selection of sequences in the packaged pseudogenomes ensures that these mimics are compatible with the most commonly used primer/probe combinations for SARS-CoV-2 diagnostics (including German Berlin Charité Hospital, American CDC, and Chinese CDC protocols). The plant transient expression system used to produce these encapsidated mimics is inherently low-cost, and sufficiently high-yielding that a single laboratory-scale preparation can provide enough positive control reagent for millions of tests.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Indicadores e Reagentes , RNA Viral/genética , Sensibilidade e Especificidade
12.
Vaccines (Basel) ; 9(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34358196

RESUMO

The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.

13.
Viruses ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452321

RESUMO

Bluetongue (BT) is a severe and economically important disease of ruminants that is widely distributed around the world, caused by the bluetongue virus (BTV). More than 28 different BTV serotypes have been identified in serum neutralisation tests (SNT), which, along with geographic variants (topotypes) within each serotype, reflect differences in BTV outer-capsid protein VP2. VP2 is the primary target for neutralising antibodies, although the basis for cross-reactions and serological variations between and within BTV serotypes is poorly understood. Recombinant BTV VP2 proteins (rVP2) were expressed in Nicotiana benthamiana, based on sequence data for isolates of thirteen BTV serotypes (primarily from Europe), including three 'novel' serotypes (BTV-25, -26 and -27) and alternative topotypes of four serotypes. Cross-reactions within and between these viruses were explored using rabbit anti-rVP2 sera and post BTV-infection sheep reference-antisera, in I-ELISA (with rVP2 target antigens) and SNT (with reference strains of BTV-1 to -24, -26 and -27). Strong reactions were generally detected with homologous rVP2 proteins or virus strains/serotypes. The sheep antisera were largely serotype-specific in SNT, but more cross-reactive by ELISA. Rabbit antisera were more cross-reactive in SNT, and showed widespread, high titre cross-reactions against homologous and heterologous rVP2 proteins in ELISA. Results were analysed and visualised by antigenic cartography, showing closer relationships in some, but not all cases, between VP2 topotypes within the same serotype, and between serotypes belonging to the same 'VP2 nucleotype'.


Assuntos
Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Proteínas do Capsídeo/classificação , Proteínas do Capsídeo/genética , Reações Cruzadas/imunologia , Sorogrupo , Animais , Antígenos Virais/imunologia , Bluetongue/imunologia , Bluetongue/virologia , Vírus Bluetongue/imunologia , Proteínas do Capsídeo/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Coelhos/imunologia , Ruminantes/imunologia , Sorotipagem , Ovinos/imunologia , Nicotiana/genética
14.
Viruses ; 13(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064959

RESUMO

The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.


Assuntos
Vetores Genéticos/genética , Vírus de Plantas/genética , Transdução Genética , Replicação Viral , Capsídeo/ultraestrutura , Vetores Genéticos/administração & dosagem , Vírus de Plantas/isolamento & purificação , Vírus de Plantas/ultraestrutura , Plantas/virologia , Nicotiana/virologia
15.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181810

RESUMO

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Assuntos
Artemisia annua , Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Agricultura Molecular , Plantas Comestíveis
16.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182608

RESUMO

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
17.
Commun Biol ; 4(1): 619, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031522

RESUMO

Many virus capsids undergo exquisitely choreographed maturation processes in their host cells to produce infectious virions, and these remain poorly understood. As a tool for studying virus maturation, we transiently expressed the capsid protein of the insect virus Nudaurelia capensis omega virus (NωV) in Nicotiana benthamiana and were able to purify both immature procapsids and mature capsids from infiltrated leaves by varying the expression time. Cryo-EM analysis of the plant-produced procapsids and mature capsids to 6.6 Å and 2.7 Å resolution, respectively, reveals that in addition to large scale rigid body motions, internal regions of the subunits are extensively remodelled during maturation, creating the active site required for autocatalytic cleavage and infectivity. The mature particles are biologically active in terms of their ability to lyse membranes and have a structure that is essentially identical to authentic virus. The ability to faithfully recapitulate and visualize a complex maturation process in plants, including the autocatalytic cleavage of the capsid protein, has revealed a ~30 Å translation-rotation of the subunits during maturation as well as conformational rearrangements in the N and C-terminal helical regions of each subunit.


Assuntos
Proteínas do Capsídeo/metabolismo , Eucariotos/fisiologia , Nicotiana/virologia , Folhas de Planta/virologia , Vírus de RNA/fisiologia , Vírion/fisiologia , Montagem de Vírus , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Quaternária de Proteína
19.
Mol Pharm ; 18(3): 1150-1156, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566625

RESUMO

The side effects of chemotherapy can be reduced by targeting tumor cells with an enzyme (or the corresponding gene) that converts a nontoxic prodrug into a toxic drug inside the tumor cells, also killing the surrounding tumor cells via the bystander effect. Viruses are the most efficient gene delivery vehicles because they have evolved to transfer their own nucleic acids into cells, but their efficiency must be balanced against the risks of infection, the immunogenicity of nucleic acids, and the potential for genomic integration. We therefore tested the effectiveness of genome-free virus-like particles (VLPs) for the delivery of Herpes simplex virus 1 thymidine kinase (HSV1-TK), the most common enzyme used in prodrug conversion therapy. HSV1-TK is typically delivered as a gene, but in the context of VLPs, it must be delivered as a protein. We constructed VLPs and smaller core-like particles (CLPs) based on Bluetongue virus, with HSV1-TK fused to the inner capsid protein VP3. TK-CLPs and TK-VLPs could be produced in large quantities in plants. The TK-VLPs killed human glioblastoma cells efficiently in the presence of ganciclovir, with an IC50 value of 14.8 µM. Conversely, CLPs were ineffective because they remained trapped in the endosomal compartment, in common with many synthetic nanoparticles. VLPs are advantageous because they can escape from endosomes and therefore allow HSV1-TK to access the cytosolic adenosine triphosphate (ATP) required for the phosphorylation of ganciclovir. The VLP delivery strategy of TK protein therefore offers a promising new modality for the treatment of cancer with systemic prodrugs such as ganciclovir.


Assuntos
Vírus Bluetongue/genética , Glioblastoma/genética , Glioblastoma/terapia , Herpesvirus Humano 1/genética , Timidina Quinase/genética , Adenosina Trifosfatases/genética , Antivirais/administração & dosagem , Proteínas do Capsídeo/genética , Linhagem Celular Tumoral , Ganciclovir/administração & dosagem , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Nanotecnologia/métodos , Fosforilação/genética , Pró-Fármacos/administração & dosagem , Transfecção/métodos
20.
Plant Biotechnol J ; 19(4): 745-756, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099859

RESUMO

Dengue virus (DENV) is an emerging threat causing an estimated 390 million infections per year. Dengvaxia, the only licensed vaccine, may not be adequately safe in young and seronegative patients; hence, development of a safer, more effective vaccine is of great public health interest. Virus-like particles (VLPs) are a safe and very efficient vaccine strategy, and DENV VLPs have been produced in various expression systems. Here, we describe the production of DENV VLPs in Nicotiana benthamiana using transient expression. The co-expression of DENV structural proteins (SP) and a truncated version of the non-structural proteins (NSPs), lacking NS5 that contains the RNA-dependent RNA polymerase, led to the assembly of DENV VLPs in plants. These VLPs were comparable in appearance and size to VLPs produced in mammalian cells. Contrary to data from other expression systems, expression of the protein complex prM-E was not successful, and strategies used in other expression systems to improve the VLP yield did not result in increased yields in plants but, rather, increased purification difficulties. Immunogenicity assays in BALB/c mice revealed that plant-made DENV1-SP + NSP VLPs led to a higher antibody response in mice compared with DENV-E domain III displayed inside bluetongue virus core-like particles and a DENV-E domain III subunit. These results are consistent with the idea that VLPs could be the optimal approach to creating candidate vaccines against enveloped viruses.


Assuntos
Vacinas contra Dengue , Imunidade Humoral , Vacinas de Partículas Semelhantes a Vírus , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Dengue/genética , Camundongos , Camundongos Endogâmicos BALB C , Nicotiana , Vacinas de Partículas Semelhantes a Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...