Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 115(6): 70, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33205255

RESUMO

Transient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased ß-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure-volume analysis. Surprisingly, an increased ß-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Cátion TRPM/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Isoproterenol/farmacologia , Cinética , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Especificidade da Espécie , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Função Ventricular Esquerda
2.
Cells ; 9(5)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354146

RESUMO

Pathological cardiac remodeling correlates with chronic neurohumoral stimulation and abnormal Ca2+ signaling in cardiomyocytes. Store-operated calcium entry (SOCE) has been described in adult and neonatal murine cardiomyocytes, and Orai1 proteins act as crucial ion-conducting constituents of this calcium entry pathway that can be engaged not only by passive Ca2+ store depletion but also by neurohumoral stimuli such as angiotensin-II. In this study, we, therefore, analyzed the consequences of Orai1 deletion for cardiomyocyte hypertrophy in neonatal and adult cardiomyocytes as well as for other features of pathological cardiac remodeling including cardiac contractile function in vivo. Cellular hypertrophy induced by angiotensin-II in embryonic cardiomyocytes from Orai1-deficient mice was blunted in comparison to cells from litter-matched control mice. Due to lethality of mice with ubiquitous Orai1 deficiency and to selectively analyze the role of Orai1 in adult cardiomyocytes, we generated a cardiomyocyte-specific and temporally inducible Orai1 knockout mouse line (Orai1CM-KO). Analysis of cardiac contractility by pressure-volume loops under basal conditions and of cardiac histology did not reveal differences between Orai1CM-KO mice and controls. Moreover, deletion of Orai1 in cardiomyocytes in adult mice did not protect them from angiotensin-II-induced cardiac remodeling, but cardiomyocyte cross-sectional area and cardiac fibrosis were enhanced. These alterations in the absence of Orai1 go along with blunted angiotensin-II-induced upregulation of the expression of Myoz2 and a lack of rise in angiotensin-II-induced STIM1 and Orai3 expression. In contrast to embryonic cardiomyocytes, where Orai1 contributes to the development of cellular hypertrophy, the results obtained from deletion of Orai1 in the adult myocardium reveal a protective function of Orai1 against the development of angiotensin-II-induced cardiac remodeling, possibly involving signaling via Orai3/STIM1-calcineurin-NFAT related pathways.


Assuntos
Miócitos Cardíacos/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Angiotensina II/metabolismo , Angiotensinas/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/fisiologia , Proteína ORAI1/fisiologia , Molécula 1 de Interação Estromal/metabolismo , Remodelação Ventricular/genética , Remodelação Ventricular/fisiologia
3.
Nat Med ; 24(1): 62-72, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227474

RESUMO

The stress-responsive epigenetic repressor histone deacetylase 4 (HDAC4) regulates cardiac gene expression. Here we show that the levels of an N-terminal proteolytically derived fragment of HDAC4, termed HDAC4-NT, are lower in failing mouse hearts than in healthy control hearts. Virus-mediated transfer of the portion of the Hdac4 gene encoding HDAC4-NT into the mouse myocardium protected the heart from remodeling and failure; this was associated with decreased expression of Nr4a1, which encodes a nuclear orphan receptor, and decreased NR4A1-dependent activation of the hexosamine biosynthetic pathway (HBP). Conversely, exercise enhanced HDAC4-NT levels, and mice with a cardiomyocyte-specific deletion of Hdac4 show reduced exercise capacity, which was characterized by cardiac fatigue and increased expression of Nr4a1. Mechanistically, we found that NR4A1 negatively regulated contractile function in a manner that depended on the HBP and the calcium sensor STIM1. Our work describes a new regulatory axis in which epigenetic regulation of a metabolic pathway affects calcium handling. Activation of this axis during intermittent physiological stress promotes cardiac function, whereas its impairment in sustained pathological cardiac stress leads to heart failure.


Assuntos
Insuficiência Cardíaca/metabolismo , Hexosaminas/biossíntese , Histona Desacetilases/metabolismo , Contração Miocárdica , Animais , Epigênese Genética , Técnicas de Transferência de Genes , Insuficiência Cardíaca/genética , Histona Desacetilases/genética , Camundongos , Camundongos Knockout , Miocárdio/enzimologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Condicionamento Físico Animal , Proteólise , Molécula 1 de Interação Estromal/metabolismo
4.
Sci Signal ; 6(281): ra50, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23800468

RESUMO

Blood platelet aggregation must be tightly controlled to promote clotting at injury sites but avoid inappropriate occlusion of blood vessels. Thrombin, which cleaves and activates Gq-coupled protease-activated receptors, and collagen-related peptide, which activates the receptor glycoprotein VI, stimulate platelets to aggregate and form thrombi. Coincident activation by these two agonists synergizes, causing the exposure of phosphatidylserine on the cell surface, which is a marker of cell death in many cell types. Phosphatidylserine exposure is also essential to produce additional thrombin on platelet surfaces, which contributes to thrombosis. We found that activation of either thrombin receptors or glycoprotein VI alone produced a calcium signal that was largely dependent only on store-operated Ca(2+) entry. In contrast, experiments with platelets from knockout mice showed that the presence of both ligands activated nonselective cation channels of the transient receptor potential C (TRPC) family, TRPC3 and TRPC6. These channels principally allowed entry of Na(+), which coupled to reverse-mode Na(+)/Ca(2+) exchange to allow calcium influx and thereby contribute to Ca(2+) signaling and phosphatidylserine exposure. Thus, TRPC channels act as coincidence detectors to coordinate responses to multiple signals in cells, thereby indirectly mediating in platelets an increase in intracellular calcium concentrations and exposure of prothrombotic phosphatidylserine.


Assuntos
Fosfatidilserinas/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/fisiologia , Adulto , Anilidas/farmacologia , Animais , Compostos de Benzil/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/farmacologia , Feminino , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Peptídeos/farmacologia , Transdução de Sinais/genética , Sódio/metabolismo , Trocador de Sódio e Cálcio/antagonistas & inibidores , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6 , Tiadiazóis/farmacologia , Tiazolidinas/farmacologia , Trombina/farmacologia , Adulto Jovem
5.
J Biol Chem ; 286(18): 15875-82, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21357697

RESUMO

The major L-type voltage-gated calcium channels in heart consist of an α1C (Ca(V)1.2) subunit usually associated with an auxiliary ß subunit (Ca(V)ß2). In embryonic cardiomyocytes, both the complete and the cardiac myocyte-specific null mutant of Ca(V)ß2 resulted in reduction of L-type calcium currents by up to 75%, compromising heart function and causing defective remodeling of intra- and extra-embryonic blood vessels followed by embryonic death. Here we conditionally excised the Ca(V)ß2 gene (cacnb2) specifically in cardiac myocytes of adult mice (KO). Upon gene deletion, Ca(V)ß2 protein expression declined by >96% in isolated cardiac myocytes and by >74% in protein fractions from heart. These latter protein fractions include Ca(V)ß2 proteins expressed in cardiac fibroblasts. Surprisingly, mice did not show any obvious impairment, although cacnb2 excision was not compensated by expression of other Ca(V)ß proteins or changes of Ca(V)1.2 protein levels. Calcium currents were still dihydropyridine-sensitive, but current density at 0 mV was reduced by <29%. The voltage for half-maximal activation was slightly shifted to more depolarized potentials in KO cardiomyocytes when compared with control cells, but the difference was not significant. In summary, Ca(V)ß2 appears to be a much stronger modulator of L-type calcium currents in embryonic than in adult cardiomyocytes. Although essential for embryonic survival, Ca(V)ß2 down-regulation in cardiomyocytes is well tolerated by the adult mice.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Miocárdio/enzimologia , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Fibroblastos/enzimologia , Fibroblastos/patologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Miocárdio/patologia , Miócitos Cardíacos/patologia , Especificidade de Órgãos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA