Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512177

RESUMO

The growing demand for Magnesium in the automotive and aviation industries has enticed the need to improve its corrosive properties. In this study, the WE43 magnesium alloys were friction stir welded (FSW) by varying the traverse speed. FSW eliminates defects such as liquefication cracking, expulsion, and voids in joints encountered frequently in fusion welding of magnesium alloys. The microstructural properties were scrutinized using light microscopy (LM) and scanning electron microscopy (SEM). Additionally, the elemental makeup of precipitates was studied using electron dispersive X-ray spectroscopy (EDS). The electrochemical behavior of specimens was evaluated by employing potentiodynamic polarization tests and was correlated with the microstructural properties. A defect-free weldment was obtained at a traverse and rotational speed of 100 mm/min and 710 rpm, respectively. All weldments significantly improved corrosion resistance compared to the base alloy. Moreover, a highly refined microstructure with redistribution/dissolution of precipitates was obtained. The grain size was reduced from 256 µm to around 13 µm. The corrosion resistance of the welded sample was enhanced by 22 times as compared to the base alloy. Hence, the reduction in grain size and the dissolution/distribution of secondary-phase particles within the Mg matrix are the primary factors for the enhancement of anti-corrosion properties.

2.
J Orthop ; 34: 61-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035199

RESUMO

The need for bioresorbable implants that are able to dissolve within the body is rising, unlike their traditional counterparts. Bulk metallic glasses (BMGs) can perhaps serve this need, since they possess incredible properties, including high biocompatibility by virtue of their amorphous structure and absence of dislocations. However, the fabrication of BMGs is challenging, since, to achieve an amorphous structure, fast cooling is a pre-requisite which is very difficult to achieve for casting due to the fact that fast cooling rate and adequate rate of filling of the mold possess a trade-off relationship. Therefore, purpose of this work is to develop a simple novel hybrid approach that is cost effective and attempts to synthesize BMG based on Mg-Ca-Zn constituent. Synthesis of bioresorbable material was attempted by hybridizing friction stir processing (FSP) technique with gas tungsten arc welding (GTAW). FSP was performed with Magnesium as base material and Calcium granules as reinforcement. After FSP, GTAW process was performed by using Zn as filler material. The added Ca and Zn were found to effectively intermix with the Mg matrix in the FSP and GTAW steps, respectively. Especially, a relatively invariable distribution of Ca phases was observed in the stirred microstructure after FSP. Finally, a wide bead consisting of mixed dendritic and columnar cast structure was obtained. The current work is expected to alleviate the physiological issues pertaining to orthopaedic fixations and decrease the need for secondary surgeries in geriatric fractures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA