Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 65: 102841, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37566945

RESUMO

Lipopolysaccharide (LPS) is a known inducer of inflammatory signaling which triggers generation of reactive oxygen species (ROS) and cell death in responsive cells like THP-1 promonocytes and freshly isolated human monocytes. A key LPS-responsive metabolic pivot point is the 9 MDa mitochondrial pyruvate dehydrogenase complex (PDC), which provides pyruvate dehydrogenase (E1), lipoamide-linked transacetylase (E2) and lipoamide dehydrogenase (E3) activities to produce acetyl-CoA from pyruvate. While phosphorylation-dependent decreases in PDC activity following LPS treatment or sepsis have been deeply investigated, redox-linked processes have received less attention. Data presented here demonstrate that LPS-induced reversible oxidation within PDC occurs in PDCE2 in both THP-1 cells and primary human monocytes. Knockout of PDCE2 by CRISPR and expression of FLAG-tagged PDCE2 in THP-1 cells demonstrated that LPS-induced glutathionylation is associated with wild type PDCE2 but not mutant protein lacking the lipoamide-linking lysine residues. Moreover, the mitochondrially-targeted electrophile MitoCDNB, which impairs both glutathione- and thioredoxin-based reductase systems, elevates ROS similar to LPS but does not cause PDCE2 glutathionylation. However, LPS and MitoCDNB together are highly synergistic for PDCE2 glutathionylation, ROS production, and cell death. Surprisingly, the two treatments together had differential effects on cytokine production; pro-inflammatory IL-1ß production was enhanced by the co-treatment, while IL-10, an important anti-inflammatory cytokine, dropped precipitously compared to LPS treatment alone. This new information may expand opportunities to understand and modulate PDC redox status and activity and improve the outcomes of pathological inflammation.


Assuntos
Lipopolissacarídeos , Estresse Oxidativo , Humanos , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Piruvatos , Citocinas/metabolismo
2.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36747682

RESUMO

Lipopolysaccharide (LPS) is a known inducer of inflammatory signaling which triggers generation of reactive oxygen species (ROS) and cell death in responsive cells like THP-1 promonocytes and freshly isolated human monocytes. A key LPS-responsive metabolic pivot point is the 9 megadalton mitochondrial pyruvate dehydrogenase complex (PDC), which provides pyruvate dehydrogenase (E1), lipoamide-linked transacetylase (E2) and lipoamide dehydrogenase (E3) activities to produce acetyl-CoA from pyruvate. While phosphorylation-dependent decreases in PDC activity following LPS treatment or sepsis have been deeply investigated, redox-linked processes have received less attention. Data presented here demonstrate that LPS-induced reversible oxidation within PDC occurs in PDCE2 in both THP-1 cells and primary human monocytes. Knockout of PDCE2 by CRISPR and expression of FLAG-tagged PDCE2 in THP-1 cells demonstrated that LPS-induced glutathionylation is associated with wild type PDCE2 but not mutant protein lacking the lipoamide-linking lysine residues. Moreover, the mitochondrially-targeted electrophile MitoCDNB, which impairs both glutathione- and thioredoxin-based reductase systems, elevates ROS similar to LPS but does not cause PDCE2 glutathionylation. However, LPS and MitoCDNB together are highly synergistic for PDCE2 glutathionylation, ROS production, and cell death. Surprisingly, the two treatments together had differential effects on cytokine production; pro-inflammatory IL-1ß production was enhanced by the co-treatment, while IL-10, an important anti-inflammatory cytokine, dropped precipitously compared to LPS treatment alone. This new information may expand opportunities to understand and modulate PDC redox status and activity and improve the outcomes of pathological inflammation.

3.
Cartilage ; 13(2_suppl): 1442S-1455S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32940061

RESUMO

OBJECTIVE: Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS: Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1ß, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS: HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION: The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


Assuntos
Menisco , Osteoartrite , Animais , Condrócitos/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Meniscos Tibiais/patologia , Menisco/metabolismo , Camundongos , Osteoartrite/metabolismo
4.
Inflammation ; 42(1): 156-169, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30203196

RESUMO

Obesity increases morbidity and mortality in acute illnesses such as sepsis and septic shock. We showed previously that the early/hyper-inflammatory phase of sepsis is exaggerated in obese mice with sepsis; sirtuin 2 (SIRT2) modulates sepsis inflammation in obesity. Evidence suggests that obesity with sepsis is associated with increased oxidative stress. It is unknown whether exaggerated hyper-inflammation of obesity with sepsis modulates the SIRT2 function in return. We showed recently that SIRT6 oxidation during hyper-inflammation of sepsis modulates its glycolytic function. This study tested the hypothesis that increased oxidative stress and direct SIRT2 oxidation exaggerate hyper-inflammation in obesity with sepsis. Using spleen and liver tissue from mice with diet-induced obesity (DIO) we studied oxidized vs. total SIRT2 expression during hyper- and hypo-inflammation of sepsis. To elucidate the mechanism of SIRT2 oxidation (specific modifications of redox-sensitive cysteines) and its effect on inflammation, we performed site-directed mutations of redox-sensitive cysteines Cys221 and Cys224 on SIRT2 to serine (C221S and C224S), transfected HEK293 cells with mutants or WT SIRT2, and studied SIRT2 enzymatic activity and NFĸBp65 deacetylation. Finally, we studied the effect of SIRT2 mutation on LPS-induced inflammation using RAW 264.7 macrophages. In an inverse relationship, total SIRT2 decreased while oxidized SIRT2 expression increased during hyper-inflammation and SIRT2 was unable to deacetylate NFĸBp65 with increased oxidative stress of obesity with sepsis. Mechanistically, both the mutants (C221S and C224S) show decreased (1) SIRT2 enzymatic activity, (2) deacetylation of NFĸBp65, and (3) anti-inflammatory activity in response to LPS vs. WT SIRT2. Direct oxidation modulates SIRT2 function during hyper-inflammatory phase of obesity with sepsis via redox sensitive cysteines.


Assuntos
Cisteína/metabolismo , Inflamação/genética , Sepse/patologia , Sirtuína 2/metabolismo , Animais , Cisteína/genética , Células HEK293 , Humanos , Camundongos , Camundongos Obesos , Mutagênese Sítio-Dirigida , Obesidade , Oxirredução , Estresse Oxidativo , Sirtuína 2/fisiologia , Fator de Transcrição RelA/metabolismo
5.
Int J Mol Sci ; 19(9)2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30216989

RESUMO

Sepsis and septic shock are the leading causes of death in non-coronary intensive care units worldwide. During sepsis-associated immune dysfunction, the early/hyper-inflammatory phase transitions to a late/hypo-inflammatory phase as sepsis progresses. The majority of sepsis-related deaths occur during the hypo-inflammatory phase. There are no phase-specific therapies currently available for clinical use in sepsis. Metabolic rewiring directs the transition from hyper-inflammatory to hypo-inflammatory immune responses to protect homeostasis during sepsis inflammation, but the mechanisms underlying this immuno-metabolic network are unclear. Here, we review the roles of NAD+ sensing Sirtuin (SIRT) family members in controlling immunometabolic rewiring during the acute systemic inflammatory response associated with sepsis. We discuss individual contributions among family members SIRT 1, 2, 3, 4 and 6 in regulating the metabolic switch between carbohydrate-fueled hyper-inflammation to lipid-fueled hypo-inflammation. We further highlight the role of SIRT1 and SIRT2 as potential "druggable" targets for promoting immunometabolic homeostasis and increasing sepsis survival.


Assuntos
Inflamação/imunologia , Inflamação/metabolismo , Sepse/imunologia , Sepse/metabolismo , Choque Séptico/imunologia , Choque Séptico/metabolismo , Sirtuínas/metabolismo , Animais , Humanos , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo
6.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089711

RESUMO

Limited understanding of the mechanisms responsible for life-threatening organ and immune failure hampers scientists' ability to design sepsis treatments. Pyruvate dehydrogenase kinase 1 (PDK1) is persistently expressed in immune-tolerant monocytes of septic mice and humans and deactivates mitochondrial pyruvate dehydrogenase complex (PDC), the gate-keeping enzyme for glucose oxidation. Here, we show that targeting PDK with its prototypic inhibitor dichloroacetate (DCA) reactivates PDC; increases mitochondrial oxidative bioenergetics in isolated hepatocytes and splenocytes; promotes vascular, immune, and organ homeostasis; accelerates bacterial clearance; and increases survival. These results indicate that the PDC/PDK axis is a druggable mitochondrial target for promoting immunometabolic and organ homeostasis during sepsis.


Assuntos
Ácido Dicloroacético/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Complexo Piruvato Desidrogenase/metabolismo , Sepse/tratamento farmacológico , Animais , Células Cultivadas , Ácido Dicloroacético/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Homeostase/efeitos dos fármacos , Homeostase/imunologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Cultura Primária de Células , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Sepse/imunologia , Sepse/mortalidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Resultado do Tratamento
7.
Arthritis Rheumatol ; 68(1): 117-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26314228

RESUMO

OBJECTIVE: Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteoarthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. METHODS: Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a fluorescence resonance energy transfer biosensor. RESULTS: Proteins in chondrocytes isolated from OA cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins, including the tyrosine kinase Src. FN-f treatment also increased the levels of Src activity. Pretreatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f-induced production of matrix metalloproteinase 13. CONCLUSION: These results demonstrate for the first time the presence of oxidative posttranslational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in OA and warrants further investigation.


Assuntos
Cartilagem Articular/citologia , Condrócitos/metabolismo , Cisteína/metabolismo , Osteoartrite/metabolismo , Oxirredução , Ácidos Sulfênicos/metabolismo , Quinases da Família src/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Condrócitos/efeitos dos fármacos , Cicloexanonas/farmacologia , Feminino , Fibronectinas/farmacologia , História Antiga , Humanos , Immunoblotting , Espectrometria de Massas , Metaloproteinase 13 da Matriz/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Microscopia Confocal , Pessoa de Meia-Idade , Fragmentos de Peptídeos/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Quinases da Família src/efeitos dos fármacos
8.
Arthritis Rheumatol ; 66(8): 2201-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24664641

RESUMO

OBJECTIVE: To determine the effects of aging and oxidative stress on the response of human articular chondrocytes to insulin-like growth factor 1 (IGF-1) and osteogenic protein 1 (OP-1). METHODS: Chondrocytes isolated from normal articular cartilage obtained from tissue donors were cultured in alginate beads or monolayer. Cells were stimulated with 50-100 ng/ml of IGF-1, OP-1, or both. Oxidative stress was induced using tert-butyl hydroperoxide. Sulfate incorporation was used to measure proteoglycan synthesis, and immunoblotting of cell lysates was performed to analyze cell signaling. Confocal microscopy was performed to measure nuclear translocation of Smad4. RESULTS: Chondrocytes isolated from the articular cartilage of tissue donors ranging in age from 24 years to 81 years demonstrated an age-related decline in proteoglycan synthesis stimulated by IGF-1 and IGF-1 plus OP-1. Induction of oxidative stress inhibited both IGF-1- and OP-1-stimulated proteoglycan synthesis. Signaling studies showed that oxidative stress inhibited IGF-1-stimulated Akt phosphorylation while increasing phosphorylation of ERK, and that these effects were greater in cells from older donors. Oxidative stress also increased p38 phosphorylation, which resulted in phosphorylation of Smad1 at the Ser(206) inhibitory site and reduced nuclear accumulation of Smad1. Oxidative stress also modestly reduced OP-1-stimulated nuclear translocation of Smad4. CONCLUSION: These results demonstrate an age-related reduction in the response of human chondrocytes to IGF-1 and OP-1, which are 2 important anabolic factors in cartilage, and suggest that oxidative stress may be a contributing factor by altering IGF-1 and OP-1 signaling.


Assuntos
Envelhecimento/metabolismo , Proteína Morfogenética Óssea 7/fisiologia , Condrócitos/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Estresse Oxidativo , Cartilagem Articular/citologia , Células Cultivadas , Humanos
9.
Arthritis Rheum ; 65(6): 1561-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23460186

RESUMO

OBJECTIVE: Matrix fragments, including fibronectin (FN) fragments, accumulate during the development of osteoarthritis (OA), stimulating the production of chondrocyte matrix metalloproteinase (MMP). The objective of this study was to determine the role of the small GTPase Rac1 in chondrocyte signaling stimulated by FN fragments, which results in MMP-13 production. METHODS: Normal human cartilage was obtained from tissue donors and OA cartilage from knee arthroplasty specimens. Rac1 activity was modulated with a chemical inhibitor, by knockdown with small interfering RNA (siRNA), or with constitutively active Rac or dominant-negative Rac adenovirus. Cells were treated with FN fragments, with or without epidermal growth factor (EGF) or transforming growth factor α (TGFα), which are known activators of Rac. Rac1 activity was measured with a colorimetric activity enzyme-linked immunosorbent assay, a pulldown assay, and immunostaining with a monoclonal antibody against active Rac. RESULTS: Chemical inhibition of Rac1, as well as knockdown by siRNA and expression of dominant-negative Rac, blocked FN fragment-stimulated MMP-13 production, while expression of constitutively active Rac increased MMP-13 production. Inhibition of Rho-associated kinase had no effect. EGF and TGFα, but not FN fragments, increased Rac1 activity and promoted the increase in MMP-13 above that achieved by stimulation with FN fragments alone. Active Rac was detected in OA cartilage by immunostaining. CONCLUSION: Rac1 is required for FN fragment-induced signaling that results in increased MMP-13 production. EGF receptor ligands, which activate Rac, can promote this effect. The presence of active Rac in OA cartilage and the ability of Rac to stimulate MMP-13 production suggest that it could play a role in the cartilage matrix destruction seen in OA.


Assuntos
Cartilagem Articular/enzimologia , Condrócitos/enzimologia , Fibronectinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Immunoblotting , Imuno-Histoquímica , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
10.
Int J Radiat Biol ; 89(4): 268-77, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23134087

RESUMO

PURPOSE: Little is known regarding radiation effects on adult articular (joint) cartilage, though joint damage has been reported following cancer treatment or occupational exposures. The aim of this study was to determine if radiation can reduce cartilage matrix production, induce cartilage degradation, or interfere with the anabolic effects of IGF-1. MATERIALS AND METHODS: Isolated chondrocytes cultured in monolayers and whole explants harvested from ankles of human donors and knees of pigs were irradiated with 2 or 10 Gy γ-rays, with or without IGF-1 stimulation. Proteoglycan synthesis and IGF-1 signaling were examined at Day 1; cartilage degradation throughout the first 96 hours. RESULTS: Human and pig cartilage responded similarly to radiation. Cell viability was unchanged. Basal and IGF-1 stimulated proteoglycan synthesis was reduced following exposure, particularly following 10 Gy. Both doses decreased IGF-induced Akt activation and IGF-1 receptor phosphorylation. Matrix metalloproteinases (ADAMTS5, MMP-1, and MMP-13) and proteoglycans were released into media after 2 and 10 Gy. CONCLUSIONS: Radiation induced an active degradation of cartilage, reduced proteoglycan synthesis, and impaired IGF-1 signaling in human and pig chondrocytes. Lowered Akt activation could account for decreased matrix synthesis. Radiation may cause a functional decline of cartilage health in joints after exposure, contributing to arthropathy.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos da radiação , Adulto , Animais , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/efeitos da radiação , DNA/metabolismo , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Proteoglicanas/biossíntese , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Suínos
11.
Am J Med Sci ; 343(6): 446-51, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22173044

RESUMO

INTRODUCTION: Secretory phospholipases A2 (sPLA2) hydrolyze phospholipids in cell membranes and extracellular structures such as pulmonary surfactant. This study tests the hypothesis that sPLA2 are elevated in human lungs during acute respiratory distress syndrome (ARDS) and that sPLA2 levels are associated with surfactant injury by hydrolysis of surfactant phospholipids. METHODS: Bronchoalveolar lavage (BAL) fluid was obtained from 18 patients with early ARDS (<72 hours) and compared with samples from 10 healthy volunteers. Secreted phospholipase A2 levels were measured (enzyme activity and enzyme immunoassay) in conjunction with ARDS subjects' surfactant abnormalities including surfactant phospholipid composition, large and small aggregates distribution and surface tension function. RESULTS: BAL sPLA2 enzyme activity was markedly elevated in ARDS samples relative to healthy subjects when measured by ex vivo hydrolysis of both phosphatidylglycerol (PG) and phosphatidylcholine (PC). Enzyme immunoassay identified increased PLA2G2A protein in the ARDS BAL fluid, which was strongly correlated with the sPLA2 enzyme activity against PG. Of particular interest, the authors demonstrated an average depletion of 69% of the PG in the ARDS sample large aggregates relative to the normal controls. Furthermore, the sPLA2 enzyme activity against PG and PC ex vivo correlated with the BAL recovery of in vivo PG and PC, respectively, and also correlated with the altered distribution of the large and small surfactant aggregates. CONCLUSIONS: These results support the hypothesis that sPLA2-mediated hydrolysis of surfactant phospholipid, especially PG by PLA2G2A, contributes to surfactant injury during early ARDS.


Assuntos
Fosfatidilgliceróis/metabolismo , Fosfolipases A2 Secretórias/fisiologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/metabolismo , Líquido da Lavagem Broncoalveolar , Diagnóstico Precoce , Humanos , Hidrólise , Fosfatidilgliceróis/deficiência , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório/enzimologia
12.
Curr Opin Rheumatol ; 20(5): 581-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18698181

RESUMO

PURPOSE OF REVIEW: The mitogen-activated protein (MAP) kinases are intracellular signaling proteins which play a central role in controlling the activity of pathways that regulate production and activity of multiple mediators of joint tissue destruction. The therapeutic potential of MAP kinase inhibition in osteoarthritis was reviewed. RECENT FINDINGS: Results from basic research studies support the role of MAP kinases as central mediators that regulate expression of proinflammatory cytokines and metalloproteinases but also as potential pain mediators as well. Cell culture and animal model studies suggest that inhibition of MAP kinases might slow progression of osteoarthritis but trials of MAP kinase inhibitors in humans with osteoarthritis have not yet been reported. Safety concerns of the currently available inhibitors have limited their initial use to trials in conditions considered more severe than osteoarthritis. SUMMARY: MAP kinase inhibition has the potential to slow disease progression in osteoarthritis and also might reduce pain; however, safety concerns have limited the use of general MAP kinase inhibitors in humans. Further understanding of the function of specific isoforms of the MAP kinases as well as upstream and downstream effectors may lead to the development of more specific inhibitors with less toxicity that could eventually be used as structure-modifying drugs for osteoarthritis.


Assuntos
Cartilagem Articular/enzimologia , Inibidores Enzimáticos/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Animais , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
13.
Cell Immunol ; 246(1): 34-45, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17573055

RESUMO

In the absence of activation signals, circulating human neutrophils and eosinophils undergo spontaneous apoptosis. The glucocorticoid dexamethasone (Dex) accelerates apoptosis in inflammatory cells such as eosinophils, but uniquely delays neutrophil apoptosis. Corresponding to the opposite effects of Dex on granulocyte apoptosis, we demonstrate that in neutrophils and eosinophils Dex oppositely affects expression of the anti-apoptotic Bcl-2 family protein Mcl-1L. Mcl-1L expression declines over time in vitro; however, Dex maintains Mcl-1L expression in neutrophils. In contrast, Dex accelerates Mcl-1L protein loss in eosinophils. Neither Mcl-1S, a pro-apoptotic splice variant, nor Bax were affected. Dex treatment in the presence of a translation inhibitor stabilized existing Mcl-1L protein in neutrophils, while Mcl-1L stability in eosinophils was unaffected. Accordingly, delay of neutrophil apoptosis by Dex was prevented by antisense Mcl-1L siRNA. Our findings suggest that regulation of Mcl-1L degradation plays an important role in the opposite effects of Dex on granulocyte apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Dexametasona/farmacologia , Eosinófilos/metabolismo , Glucocorticoides/farmacologia , Granulócitos/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Baixo , Eosinófilos/efeitos dos fármacos , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Neutrófilos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Proteína X Associada a bcl-2/metabolismo
14.
Plant Dis ; 86(1): 39-46, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30822996

RESUMO

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici, is most destructive in the western United States and has become increasingly important in the south-central states. The disease has been monitored by collaborators through field surveys and in disease nurseries throughout the United States. In the year 2000, stripe rust occurred in more than 20 states throughout the country, which was the most widespread occurrence in recorded history. Although fungicide applications in many states reduced yield losses, the disease caused multimillion dollar losses in the United States, especially in Arkansas and California. One of the prevalent cultivars, RSI 5, had a yield loss of about 50% in the Sacramento-San Joaquin Delta region of California. In the Pacific Northwest, wheat losses due to stripe rust were minimal because cultivars with durable resistance were widely grown and the weather in May 2000 was not favorable for the disease. To identify races of the pathogen, stripe rust collections from 20 states across the United States were analyzed on 20 wheat differential cultivars, including Clement (Yr9, YrCle), Compair (Yr8, Yr19), and the Yr8 and Yr9 near-isogenic lines. In 2000, 21 previously identified races and 21 new races were identified. Of the 21 new races, 8 were pathotypes with combinations of virulences previously known to exist in the United States, and 13 had virulences to one or more of the lines Yr8, Yr9, Clement, or Compair. This is the first report of virulence to Yr8 and Yr9 in the United States. Most of the new races were also virulent on Express. Races that are virulent on Express have been identified in California since 1998. The races virulent on Yr8, Yr9, and Express were widely distributed in California and states east of the Rocky Mountains in 2000. The epidemic in 2000 demonstrates that increased efforts to breed for stripe rust resistance are needed in California, the south-central states, and some other states in the Great Plains. Diversification of resistance genes and use of durable resistance should prevent large-scale and severe epidemics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...