Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cell Rep ; 43(4): 114105, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619967

RESUMO

Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.


Assuntos
Células Matadoras Naturais , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Amino Açúcares/metabolismo , Genômica/métodos , Rituximab/farmacologia , Rituximab/metabolismo , Linhagem Celular Tumoral
2.
PLoS Pathog ; 19(11): e1011585, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37939134

RESUMO

Natural killer (NK) cells lyse virus-infected cells and transformed cells through polarized delivery of lytic effector molecules into target cells. We have shown that NK cells lyse Plasmodium falciparum-infected red blood cells (iRBC) via antibody-dependent cellular cytotoxicity (ADCC). A high frequency of adaptive NK cells, with elevated intrinsic ADCC activity, in people chronically exposed to malaria transmission is associated with reduced parasitemia and resistance to disease. How NK cells bind to iRBC and the outcome of iRBC lysis by NK cells has not been investigated. We applied gene ablation in inducible erythrocyte precursors and antibody-blocking experiments with iRBC to demonstrate a central role of CD58 and ICAM-4 as ligands for adhesion by NK cells via CD2 and integrin αMß2, respectively. Adhesion was dependent on opsonization of iRBC by IgG. Live imaging and quantitative flow cytometry of NK-mediated ADCC toward iRBC revealed that damage to the iRBC plasma membrane preceded damage to P. falciparum within parasitophorous vacuoles (PV). PV were identified and tracked with a P.falciparum strain that expresses the PV membrane-associated protein EXP2 tagged with GFP. After NK-mediated ADCC, PV were either found inside iRBC ghosts or released intact and devoid of RBC plasma membrane. Electron microscopy images of ADCC cultures revealed tight NK-iRBC synapses and free vesicles similar in size to GFP+ PV isolated from iRBC lysates by cell sorting. The titer of IgG in plasma of malaria-exposed individuals that bound PV was two orders of magnitude higher than IgG that bound iRBC. This immune IgG stimulated efficient phagocytosis of PV by primary monocytes. The selective NK-mediated damage to iRBC, resulting in release of PV, and subsequent phagocytosis of PV by monocytes may combine for efficient killing and removal of intra-erythrocytic P.falciparum parasite. This mechanism may mitigate the inflammation and malaria symptoms during blood-stage P. falciparum infection.


Assuntos
Malária Falciparum , Malária , Humanos , Monócitos , Ligantes , Vacúolos , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Células Matadoras Naturais , Plasmodium falciparum , Malária/metabolismo , Fagocitose , Imunoglobulina G/metabolismo
3.
Sci Immunol ; 8(87): eadh1781, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683038

RESUMO

Genetic studies associate killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands with a variety of human diseases. The basis for these associations and the relative contribution of inhibitory and activating KIR to NK cell responses are unclear. Because KIR binding to HLA-I is peptide dependent, we performed systematic screens, which totaled more than 3500 specific interactions, to determine the specificity of five KIR for peptides presented by four HLA-C ligands. Inhibitory KIR2DL1 was largely peptide sequence agnostic and could bind ~60% of hundreds of HLA-peptide complexes tested. Inhibitory KIR2DL2, KIR2DL3, and activating KIR2DS1 and KIR2DS4 bound only 10% and down to 1% of HLA-peptide complexes tested, respectively. Activating KIR2DS1, previously described as weak, had high binding affinity for HLA-C, with high peptide sequence specificity. Our data revealed MHC-restricted peptide recognition by germline-encoded NK receptors and suggest that NK cell responses can be shaped by HLA-I-bound immunopeptidomes in the context of disease or infection.


Assuntos
Antígenos HLA-C , Peptídeos , Humanos , Ligantes , Sequência de Aminoácidos , Células Germinativas
4.
Eur J Immunol ; 52(9): 1431-1440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35816444

RESUMO

It is commonly believed that IL-12 produced by DCs in response to pathogens is the first signal that stimulates the production of IFN-γ by NK cells. However, IL-12 production by DCs in response to bacterial LPS depends on either engagement of CD40 by CD40L on activated T cells or IFN-γ from NK cells. This suggests that during the primary immune response, NK cells produce IFN-γ before IL-12 production by DCs. Here, using single-cell measurements, cell sorting and mouse lines deficient in IL-12, IL-23, type I IFN receptor and the IL-18 receptor, we show that a subset of BM-derived DCs characterized by low expression of MHC class II (MHCIIlow ) stimulates IFN-γ production by NK cells. The expression of Toll-like Receptor (TLR) 4 on DCs but not NK cells was required for such NK-derived IFN-γ. In addition, soluble factor(s) produced by LPS-activated MHCIIlow DCs were sufficient to induce IFN-γ production by NK cells independent of IL-12, IL-23, and IL-18. This response was enhanced in the presence of a low dose of IL-2. These results delineate a previously unknown pathway of DC-mediated IFN-γ production by NK cells, which is independent of commonly known cytokines.


Assuntos
Interleucina-12 , Interleucina-18 , Animais , Células Cultivadas , Células Dendríticas , Interferon gama/metabolismo , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Interleucina-23/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos
5.
Front Immunol ; 13: 840844, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585985

RESUMO

Dominant inhibitory receptors for HLA class I (HLA-I) endow NK cells with high intrinsic responsiveness, a process termed licensing or education, but hinder their ability to kill HLA-I+ tumor cells. Cancer immunotherapy with adoptive transfer of NK cells must overcome inhibitory signals by such receptors to promote elimination of HLA-I+ tumor cells. As proof of concept, we show here that a chimeric antigen receptor (CAR) can be engineered to overcome inhibition by receptors for HLA-I and to promote lysis of HLA-I+ tumor cells by CAR-NK cells. The design of this NK-tailored CAR (NK-CAR) relied on the potent NK cell activation induced by the synergistic combination of NK receptors CD28H (CD28 homolog, TMIGD2) and 2B4 (CD244, SLAMF4). An NK-CAR consisting of the single-chain fragment variable (scFv) of a CD19 antibody, the CD28H transmembrane domain, and the fusion of CD28H, 2B4, and TCRζ signaling domains was compared to a third-generation T-cell CAR with a CD28-41BB-TCRζ signaling domain. The NK-CAR delivered stronger activation signals to NK cells and induced more robust tumor cell lysis. Furthermore, such CAR-NK cells could overcome inhibition by HLA-E or HLA-C expressed on tumor cells. Therefore, engineering of CAR-NK cells that could override inhibition by HLA-I in patients undergoing cancer immunotherapy is feasible. This approach offers an attractive alternative to more complex strategies, such as genetic editing of inhibitory receptors in CAR-NK cells or treatment of patients with a combination of CAR-NK cells and checkpoint blockade with antibodies to inhibitory receptors. A significant benefit of inhibition-resistant NK-CARs is that NK cell inhibition would be overcome only during contact with targeted tumor cells and that HLA-I on healthy cells would continue to maintain NK cell responsiveness through licensing.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Transferência Adotiva , Antígenos CD28 , Citotoxicidade Imunológica , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia , Receptores de Antígenos Quiméricos/genética
6.
Elife ; 112022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35587797

RESUMO

Dimorphic amino acids at positions 77 and 80 delineate HLA-C allotypes into two groups, C1 and C2, which associate with disease through interactions with C1 and C2-specific natural killer cell receptors. How the C1/C2 dimorphism affects T cell recognition is unknown. Using HLA-C allotypes that differ only by the C1/C2-defining residues, we found that KRAS-G12D neoantigen-specific T cell receptors (TCRs) discriminated between C1 and C2 presenting the same KRAS-G12D peptides. Structural and functional experiments, and immunopeptidomics analysis revealed that Ser77 in C1 and Asn77 in C2 influence amino acid preference near the peptide C-terminus (pΩ), including the pΩ-1 position, in which C1 favors small and C2 prefers large residues. This resulted in weaker TCR affinity for KRAS-G12D-bound C2-HLA-C despite conserved TCR contacts. Thus, the C1/C2 dimorphism on its own impacts peptide presentation and HLA-C-restricted T cell responses, with implications in disease, including adoptive T cell therapy targeting KRAS-G12D-induced cancers.


Assuntos
Antígenos HLA-C , Linfócitos T , Antígenos HLA-C/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T
7.
Methods Mol Biol ; 2463: 269-288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344181

RESUMO

Natural killer (NK) cells are an important component of the cancer immune surveillance system. They are regulated by germline-encoded receptors that activate and inhibit their effector function, such as secretion of cytokines and direct lysis of tumor cells and virus-infected cells. Without the need to be primed by prior exposure to tumor antigen, NK cells can detect ligands expressed on tumor cells and selectively kill these cells. NK cells are under strict control by inhibitory receptors that bind to HLA class I on target cells and block early activation signals, thus preventing lysis of target cells. The sensitivity to lysis by NK cells is therefore determined to a large extent by the expression of HLA class I molecules on tumor cells. In addition to receptor-ligand interactions that occur at NK-target cell synapses, many other factors determine the sensitivity of tumor cells to lysis by NK. Intrinsic properties of tumor cells, such as their metabolism and signaling networks establish a threshold above which they will succumb to the death pathways triggered by NK cell attack. Here we provide a protocol for a genome-wide CRISPR screen in tumor cells to identify factors that regulate their sensitivity to primary human NK cells. Tumor cells first transduced for expression of Cas9 are then transduced with a guide RNA (gRNA) library and co-cultured with NK cells. Deep sequencing of the library generated from the genome of tumor cells that survived the selection by NK cells and analysis of the distribution of guide RNAs is performed to identify genes that promote either sensitivity or resistance to NK-mediated killing. The contribution of individual genes to tumor sensitivity can be validated by knockouts using individual gRNAs. The techniques and workflow described here could be applied to primary tumors from cancer patients and reveal tumor-specific points of vulnerability that could be exploited for cancer immunotherapy, such as checkpoint blockade or expression of chimeric antigen receptors specifically designed to activate NK cell cytotoxicity.


Assuntos
Células Matadoras Naturais , Neoplasias , Contagem de Células , Humanos , Imunoterapia , Neoplasias/genética , Transdução de Sinais
8.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33661303

RESUMO

IgG antibodies play a role in malaria immunity, but whether and how IgM protects from malaria and the biology of Plasmodium falciparum (Pf)-specific IgM B cells is unclear. In a Mali cohort spanning infants to adults, we conducted longitudinal analyses of Pf- and influenza-specific B cells. We found that Pf-specific memory B cells (MBCs) are disproportionally IgM+ and only gradually shift to IgG+ with age, in contrast to influenza-specific MBCs that are predominantly IgG+ from infancy to adulthood. B cell receptor analysis showed Pf-specific IgM MBCs are somatically hypermutated at levels comparable to influenza-specific IgG B cells. During acute malaria, Pf-specific IgM B cells expand and upregulate activation/costimulatory markers. Finally, plasma IgM was comparable to IgG in inhibiting Pf growth and enhancing phagocytosis of Pf by monocytes in vitro. Thus, somatically hypermutated Pf-specific IgM MBCs dominate in children, expand and activate during malaria, and produce IgM that inhibits Pf through neutralization and opsonic phagocytosis.


Assuntos
Anticorpos Antiprotozoários/imunologia , Linfócitos B/imunologia , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Malária Falciparum/imunologia , Malária/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Memória Imunológica , Lactente , Recém-Nascido , Estudos Longitudinais , Malária/sangue , Malária/epidemiologia , Malária/parasitologia , Malária Falciparum/sangue , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Masculino , Mali/epidemiologia , Fagocitose/imunologia , Adulto Jovem
9.
Immunohorizons ; 4(7): 415-419, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665300

RESUMO

Dendritic cells (DCs) play a key role in the initiation of an immune response and are known as "professional" APCs because of their ability to activate naive T cells. A widely used method to generate DCs in vitro is to culture bone marrow (BM) cells or blood monocytes in the presence of GM-CSF and IL-4. In this study, we show that a small population of NK cells residing in the BM of RAG-/-, but not RAG-/- γc chain-/- mice, remain in the DC culture and is the source of IFN-γ produced after stimulation with LPS. These cells, which may represent early promoters of LPS-induced responses, have to be taken into account when interpreting experiments using BM-derived DCs.


Assuntos
Células da Medula Óssea/citologia , Células Dendríticas/citologia , Proteínas de Homeodomínio/metabolismo , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Proteínas de Homeodomínio/genética , Interleucina-4/farmacologia , Lipopolissacarídeos/toxicidade , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
10.
J Infect Dis ; 222(7): 1170-1179, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386415

RESUMO

BACKGROUND: Chronic active Epstein-Barr virus (CAEBV) presents with high levels of viral genomes in blood and tissue infiltration with Epstein-Barr virus (EBV)-positive lymphocytes. The pathogenesis of CAEBV is poorly understood. METHODS: We evaluated 2 patients with natural killer (NK) cell CAEBV and studied their NK cell phenotype and signaling pathways in cells. RESULTS: Both patients had increased numbers of NK cells, EBV predominantly in NK cells, and immature NK cells in the blood. Both patients had increased phosphorylation of Akt, S6, and STAT1 in NK cells, and increased total STAT1. Treatment of 1 patient with sirolimus reduced phosphorylation of S6 in T and B cells, but not in NK cells and did not reduce levels of NK cells or EBV DNA in the blood. Treatment of both patients' cells with JAK inhibitors in vitro reduced phosphorylated STAT1 to normal. Patients with T- or B-cell CAEBV had increased phosphorylation of Akt and S6 in NK cells, but no increase in total STAT1. CONCLUSIONS: The increase in phosphorylated Akt, S6, and STAT1, as well as immature NK cells describe a new phenotype for NK cell CAEBV. The reduction of STAT1 phosphorylation in their NK cells with JAK inhibitors suggests a novel approach to therapy.


Assuntos
Infecções por Vírus Epstein-Barr/diagnóstico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transtornos Linfoproliferativos/diagnóstico , Transdução de Sinais , Adolescente , Adulto , Linfócitos B/imunologia , Linfócitos B/virologia , Doença Crônica , Infecções por Vírus Epstein-Barr/virologia , Feminino , Humanos , Células Matadoras Naturais/virologia , Transtornos Linfoproliferativos/virologia , Masculino , Fosforilação , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT1/metabolismo , Linfócitos T/imunologia , Linfócitos T/virologia
11.
Proc Natl Acad Sci U S A ; 117(23): 12826-12835, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461371

RESUMO

Complete cancer regression occurs in a subset of patients following adoptive T cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). However, the low success rate presents a great challenge to broader clinical application. To provide insight into TIL-based immunotherapy, we studied a successful case of ACT where regression was observed against tumors carrying the hotspot mutation G12D in the KRAS oncogene. Four T cell receptors (TCRs) made up the TIL infusion and recognized two KRAS-G12D neoantigens, a nonamer and a decamer, all restricted by human leukocyte antigen (HLA) C*08:02. Three of them (TCR9a, 9b, and 9c) were nonamer-specific, while one was decamer-specific (TCR10). We show that only mutant G12D but not the wild-type peptides stabilized HLA-C*08:02 due to the formation of a critical anchor salt bridge to HLA-C. Therapeutic TCRs exhibited high affinities, ranging from nanomolar to low micromolar. Intriguingly, TCR binding affinities to HLA-C inversely correlated with their persistence in vivo, suggesting the importance of antigenic affinity in the function of therapeutic T cells. Crystal structures of TCR-HLA-C complexes revealed that TCR9a to 9c recognized G12D nonamer with multiple conserved contacts through shared CDR2ß and CDR3α. This allowed CDR3ß variation to confer different affinities via a variable HLA-C contact, generating an oligoclonal response. TCR10 recognized an induced and distinct G12D decamer conformation. Thus, this successful case of ACT included oligoclonal TCRs of high affinity recognizing distinct conformations of neoantigens. Our study revealed the potential of a structural approach to inform clinical efforts in targeting KRAS-G12D tumors by immunotherapy and has general implications for T cell-based immunotherapies.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias/química , Sítios de Ligação , Antígenos HLA-C/química , Antígenos HLA-C/imunologia , Humanos , Células Jurkat , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Receptores de Antígenos de Linfócitos T/química
12.
Infect Immun ; 88(3)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31907195

RESUMO

Natural killer (NK) cells are key effector cells of innate resistance capable of destroying tumors and virus-infected cells through cytotoxicity and rapid cytokine production. The control of NK cell responses is complex and only partially understood. PD-1 is an inhibitory receptor that regulates T cell function, but a role for PD-1 in regulating NK cell function is only beginning to emerge. Here, we investigated PD-1 expression on NK cells in children and adults in Mali in a longitudinal analysis before, during, and after infection with Plasmodium falciparum malaria. We found that NK cells transiently upregulate PD-1 expression and interleukin-6 (IL-6) production in some individuals during acute febrile malaria. Furthermore, the percentage of PD-1 expressing NK cells increases with age and cumulative malaria exposure. Consistent with this, NK cells of malaria-naive adults upregulated PD-1 following P. falciparum stimulation in vitro Additionally, functional in vitro studies revealed that PD-1 expression on NK cells is associated with diminished natural cytotoxicity but enhanced antibody-dependent cellular cytotoxicity (ADCC). These data indicate that PD-1+ NK cells expand in the context of chronic immune activation and suggest that PD-1 may contribute to skewing NK cells toward enhanced ADCC during infections such as malaria.


Assuntos
Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/patogenicidade , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Fatores Etários , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antígeno CD56/metabolismo , Linhagem Celular , Criança , Proteínas Ligadas por GPI/metabolismo , Humanos , Interleucina-6/metabolismo , Células K562 , Estudos Longitudinais , Malária/imunologia , Camundongos , Receptores de IgG/metabolismo
13.
Proc Natl Acad Sci U S A ; 117(1): 522-531, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871169

RESUMO

Interleukin 15 (IL-15) is an essential cytokine for the survival and proliferation of natural killer (NK) cells. IL-15 activates signaling by the ß and common γ (γc) chain heterodimer of the IL-2 receptor through trans-presentation by cells expressing IL-15 bound to the α chain of the IL-15 receptor (IL-15Rα). We show here that membrane-associated IL-15Rα-IL-15 complexes are transferred from presenting cells to NK cells through trans-endocytosis and contribute to the phosphorylation of ribosomal protein S6 and NK cell proliferation. NK cell interaction with soluble or surface-bound IL-15Rα-IL-15 complex resulted in Stat5 phosphorylation and NK cell survival at a concentration or density of the complex much lower than required to stimulate S6 phosphorylation. Despite this efficient response, Stat5 phosphorylation was reduced after inhibition of metalloprotease-induced IL-15Rα-IL-15 shedding from trans-presenting cells, whereas S6 phosphorylation was unaffected. Conversely, inhibition of trans-endocytosis by silencing of the small GTPase TC21 or expression of a dominant-negative TC21 reduced S6 phosphorylation but not Stat5 phosphorylation. Thus, trans-endocytosis of membrane-associated IL-15Rα-IL-15 provides a mode of regulating NK cells that is not afforded to IL-2 and is distinct from activation by soluble IL-15. These results may explain the strict IL-15 dependence of NK cells and illustrate how the cellular compartment in which receptor-ligand interaction occurs can influence functional outcome.


Assuntos
Proliferação de Células , Células Dendríticas/metabolismo , Subunidade alfa de Receptor de Interleucina-15/metabolismo , Interleucina-15/metabolismo , Células Matadoras Naturais/fisiologia , Comunicação Celular/fisiologia , Linhagem Celular , Endocitose/fisiologia , Voluntários Saudáveis , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação/fisiologia , Cultura Primária de Células , Proteína S6 Ribossômica/metabolismo
14.
Trends Immunol ; 40(12): 1078-1081, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732285

RESUMO

The promise of natural killer (NK) cells as effectors in cancer cellular therapy is limited by their expression of dominant inhibitory receptors for human leukocyte antigen (HLA) class I. Here, we discuss how chimeric antigen receptors (CARs) engineered to override inhibitory signaling might boost NK cell antitumor responses, independently of blockade of NK cell inhibitory receptors.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/metabolismo , Animais , Citotoxicidade Imunológica , Engenharia Genética , Antígenos HLA/metabolismo , Humanos , Células Matadoras Naturais/transplante , Neoplasias/imunologia , Receptores de Antígenos Quiméricos/genética , Transdução de Sinais , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante
15.
Proc Natl Acad Sci U S A ; 116(26): 12964-12973, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31138701

RESUMO

Natural killer (NK) cells have an important role in immune defense against viruses and cancer. Activation of human NK cell cytotoxicity toward infected or tumor cells is regulated by killer cell immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen class I (HLA-I). Combinations of KIR with HLA-I are genetically associated with susceptibility to disease. KIR2DS4, an activating member of the KIR family with poorly defined ligands, is a receptor of unknown function. Here, we show that KIR2DS4 has a strong preference for rare peptides carrying a Trp at position 8 (p8) of 9-mer peptides bound to HLA-C*05:01. The complex of a peptide bound to HLA-C*05:01 with a Trp at p8 was sufficient for activation of primary KIR2DS4+ NK cells, independent of activation by other receptors and of prior NK cell licensing. HLA-C*05:01+ cells that expressed the peptide epitope triggered KIR2DS4+ NK cell degranulation. We show an inverse correlation of the worldwide allele frequency of functional KIR2DS4 with that of HLA-C*05:01, indicative of functional interaction and balancing selection. We found a highly conserved peptide sequence motif for HLA-C*05:01-restricted activation of human KIR2DS4+ NK cells in bacterial recombinase A (RecA). KIR2DS4+ NK cells were stimulated by RecA epitopes from multiple human pathogens, including Helicobacter, Chlamydia, Brucella, and Campylobacter. We predict that over 1,000 bacterial species could activate NK cells through KIR2DS4, and propose that human NK cells also contribute to immune defense against bacteria through recognition of a conserved RecA epitope presented by HLA-C*05:01.


Assuntos
Bactérias/imunologia , Epitopos/metabolismo , Antígenos HLA-C/metabolismo , Células Matadoras Naturais/imunologia , Receptores KIR/metabolismo , Motivos de Aminoácidos/imunologia , Linhagem Celular , Epitopos/imunologia , Antígenos HLA-C/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Recombinases Rec A/imunologia , Receptores KIR/imunologia
16.
J Exp Med ; 216(6): 1280-1290, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30979790

RESUMO

How antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum-infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum-infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.


Assuntos
Células Matadoras Naturais/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/fisiologia , Adolescente , Anticorpos Antiprotozoários/imunologia , Antígeno CD56/metabolismo , Criança , Pré-Escolar , Eritrócitos/parasitologia , Humanos , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Receptores de IgG/metabolismo , Adulto Jovem
17.
Cancer Immunol Res ; 7(6): 939-951, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31018957

RESUMO

The CD28-B7 family of receptor-ligand pairs regulates lymphocyte responses through costimulation and coinhibition. It includes checkpoint inhibitors, such as PD-1, which limit antitumor and antivirus T-cell responses. CD28 homolog (CD28H) and B7H7 have been identified as a receptor-ligand pair in this family, which has costimulatory activity in T cells. Here, we show that CD28H is expressed in primary natural killer (NK) cells and that it is a strong activator of NK cells through selective synergy with receptors NKp46 and 2B4 to induce degranulation, lysis of target cells, and production of proinflammatory cytokines. Expression of B7H7 on target cells enhanced both natural and antibody-dependent cellular cytotoxicity of NK cells. Mutation of tyrosine 192 on the CD28H cytoplasmic tail abolished NK-cell activation through CD28H. As B7H7 is broadly expressed in tumor tissues, we engineered a CD28H chimeric antigen receptor (CD28H-CAR) consisting of full-length CD28H fused to the cytoplasmic domain of T-cell receptor ζ chain. Remarkably, expression of CD28H-CAR in NK cells triggered lysis of B7H7+ HLA-E+ tumor cells by overriding inhibition by the HLA-E receptor NKG2A. The cytoplasmic domains of CD28H and of the ζ chain were both required for this activity. Thus, CD28H is a powerful activation receptor of NK cells that broadens their antitumor activity and holds promise as a component of NK-based CARs for cancer immunotherapy.


Assuntos
Antígenos B7/imunologia , Antígenos CD28/metabolismo , Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Biomarcadores , Antígenos CD28/genética , Degranulação Celular/imunologia , Citocinas/biossíntese , Humanos , Imunofenotipagem , Imunoterapia Adotiva , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
18.
Front Immunol ; 10: 2879, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921143

RESUMO

The anti-leukemia activity of NK cells helps prevent relapse during hematopoietic stem cell transplantation (HSCT) in leukemia patients. However, the factors that determine the sensitivity or resistance of leukemia cells in the context of NK-mediated cytotoxicity are not well-established. Here, we performed a genome-wide CRISPR screen in the human chronic-myelogenous-leukemia (CML) cell line K562 to identify genes that regulate the vulnerability of leukemia cells to killing by primary human NK cells. The distribution of guide RNAs (gRNAs) in K562 cells that survived co-incubation with NK cells showed that loss of NCR3LG1, which encodes the ligand of the natural cytotoxicity receptor NKp30, protected K562 cells from killing. In contrast, loss of genes that regulate the antigen-presentation and interferon-γ-signaling pathways increased the vulnerability of K562 cells. The addition of IFN-γ neutralizing antibody increased the susceptibility of K562 cells to NK-mediated killing. Upregulation of MHC class I on K562 cells after co-incubation with NK cells was dependent on IFNGR2. Analysis of RNA-seq data from The Cancer Genome Atlas (TCGA) showed that low IFNGR2 expression in cancer tissues was associated with improved overall survival in acute myeloid leukemia (AML) and Kidney Renal Clear Cell Carcinoma (KIRC) patients. Our results, showing that the upregulation of MHC class I by NK-derived IFN-γ leads to resistance to NK cytotoxicity, suggest that targeting IFN-γ responses might be a promising approach to enhance NK cell anti-cancer efficacy.


Assuntos
Carcinoma de Células Renais , Interferon gama , Células Matadoras Naturais/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva , Evasão Tumoral , Antígenos B7/genética , Antígenos B7/imunologia , Sistemas CRISPR-Cas , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Estudo de Associação Genômica Ampla , Humanos , Interferon gama/genética , Interferon gama/imunologia , Células K562 , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Células Matadoras Naturais/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/imunologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Receptores de Interferon/genética , Receptores de Interferon/imunologia
19.
20.
J Immunol ; 201(10): 2879-2884, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30315139

RESUMO

Early secretion of IL-12 by mouse dendritic cells (DCs) instructs T cells to make IFN-γ. However, only activated, but not naive T cells are able to license DCs for IL-12 production. We hypothesized that it might be due to different levels of CD40L expression on the surface of these cells, as CD40 signals are required for IL-12 production. Using quantitative cell-free systems incorporating CD40L in lipid bilayers combined with total internal reflection fluorescence microscopy and flow cytometry, we show that as low as ∼200 CD40L molecules/µm2 in combination with IL-4 is sufficient to induce IL-12 production by DCs. Remarkably, CD40L alone is adequate to induce IL-23 secretion by DCs. Thus, although activated T cells have somewhat higher levels of CD40L, it is the combination of CD40L and the cytokines they secrete that licenses DCs and influences the effector class of the immune response.


Assuntos
Ligante de CD40/imunologia , Células Dendríticas/imunologia , Interleucina-12/biossíntese , Interleucina-23/biossíntese , Ativação Linfocitária/imunologia , Animais , Células Dendríticas/metabolismo , Interleucina-12/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...